數據結構與算法(6)二叉樹遍歷

 首先,咱們看看前序、中序、後序遍歷的特性: 
前序遍歷: 
    1.訪問根節點 
    2.前序遍歷左子樹 
    3.前序遍歷右子樹 
中序遍歷: 
    1.中序遍歷左子樹 
    2.訪問根節點 
    3.中序遍歷右子樹 
後序遍歷: 
    1.後序遍歷左子樹 
    2.後序遍歷右子樹 
    3.訪問根節點node

1、已知前序、中序遍歷,求後序遍歷ios

  前序遍歷:         GDAFEMHZ算法

  中序遍歷:         ADEFGHMZ編程

算法流程:oop

  1 肯定根,肯定左子樹,肯定右子樹。spa

  2 在左子樹中遞歸。code

  3 在右子樹中遞歸。blog

  4 打印當前根。遞歸

後序遍歷順序爲:  AEFDHZMGstring

編程實現:

#include <iostream>  
#include <fstream>  
#include <string>  

struct TreeNode{
  struct TreeNode* left;
  struct TreeNode* right;
  char  elem;
};

void BinaryTreeFromOrderings(char* inorder, char* preorder, int length){
  if(length == 0){
      return;
  }
  TreeNode* node = new TreeNode;//Noice that [new] should be written out.
  node->elem = *preorder;
  int rootIndex = 0;
  for(;rootIndex < length; rootIndex++){
      if(inorder[rootIndex] == *preorder)
      break;
    }
  //Left
  BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
  //Right
  BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
  cout<<node->elem<<endl;
  return;
}

int main(int argc, char* argv[]){
    printf("Hello World!\n");
    char* pr="GDAFEMHZ";
    char* in="ADEFGHMZ";
    BinaryTreeFromOrderings(in, pr, 8);
    printf("\n");
    return 0;
}

2、已知後序、中序遍歷,求前序遍歷

  中序遍歷:       ADEFGHMZ

  後序遍歷:       AEFDHZMG

算法流程:  

  1 肯定根,肯定左子樹,肯定右子樹。

  2 打印當前根。

  3 在左子樹中遞歸。

  4 在右子樹中遞歸。

那麼,前序遍歷:   GDAFEMHZ

編程實現:

#include <iostream>
#include <fstream>
#include <string>

struct TreeNode{
    struct TreeNode* left;
    struct TreeNode* right;
    char  elem;
};

TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length){
    if(length == 0){
        return NULL;
    }
    TreeNode* node = new TreeNode;//Noice that [new] should be written out.
    node->elem = *(aftorder+length-1);
    std::cout<<node->elem<<std::endl;
    int rootIndex = 0;
    for(;rootIndex < length; rootIndex++)//a variation of the loop
    {
        if(inorder[rootIndex] ==  *(aftorder+length-1))
            break;
    }
    node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);
    node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));
    
    return node;
}

int main(int argc, char** argv){
    char* af="AEFDHZMG";    
    char* in="ADEFGHMZ"; 
    BinaryTreeFromOrderings(in, af, 8); 
    printf("\n");
    return 0;
}
相關文章
相關標籤/搜索