上一章咱們有講到一個mapreduce案例——移動流量排序,若是咱們要將最後的輸出結果按總流量大小逆序輸出,該怎麼實現呢?本節博主將分享這個實現的過程。java
1、分析apache
首先,要實現這個功能,咱們可能會想到是否有辦法將輸出的結果先緩存起來,等執行完成後,在排序一塊兒次性所有輸出。是的,這的確是一個能夠實現的思路;centos
咱們能夠啓動一個reduce來處理,在reduce階段中reduce()方法每次執行時,將key和value緩存到一個TreeMap裏面,而且不執行輸出;當reduce所有切片處理完成後,會調用一個cleanup()方法,且這個方法僅會被調用一次,咱們能夠在這個方法裏面作排序輸出。緩存
上面的這種方式確實是能夠實現,當是並非很優雅;咱們能夠利用mapreduce自身的map階段輸出key的特性來實現,這個特性就是全部的key會按照key類comparable方法實現的實現去作排序輸出。詳細過程,咱們能夠將整個需求分紅兩個mapreduce過程來執行,第一個mapreduce就和以前的博客中同樣只作統計流量,第二個mapreduce咱們就用key的特性去實現排序。服務器
2、實現方案(key特性實現方式)app
FlowBean(流量統計bean類)ide
package com.empire.hadoop.mr.flowsort; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable; /** * 類 FlowBean.java的實現描述:流量統計bean類 * * @author arron 2018年12月1日 下午10:59:42 */ public class FlowBean implements WritableComparable<FlowBean> { private long upFlow; private long dFlow; private long sumFlow; //反序列化時,須要反射調用空參構造函數,因此要顯示定義一個 public FlowBean() { } public FlowBean(long upFlow, long dFlow) { this.upFlow = upFlow; this.dFlow = dFlow; this.sumFlow = upFlow + dFlow; } public void set(long upFlow, long dFlow) { this.upFlow = upFlow; this.dFlow = dFlow; this.sumFlow = upFlow + dFlow; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getdFlow() { return dFlow; } public void setdFlow(long dFlow) { this.dFlow = dFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } /** * 序列化方法 */ public void write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(dFlow); out.writeLong(sumFlow); } /** * 反序列化方法 注意:反序列化的順序跟序列化的順序徹底一致 */ public void readFields(DataInput in) throws IOException { upFlow = in.readLong(); dFlow = in.readLong(); sumFlow = in.readLong(); } public String toString() { return upFlow + "\t" + dFlow + "\t" + sumFlow; } public int compareTo(FlowBean o) { return this.sumFlow > o.getSumFlow() ? -1 : 1; //從大到小, 當前對象和要比較的對象比, 若是當前對象大, 返回-1, 交換他們的位置(本身的理解) } }
FlowCountSort(流量統計後的mapreduce排序實現主類)函數
package com.empire.hadoop.mr.flowsort; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 13480253104 180 180 360 13502468823 7335 110349 117684 13560436666 1116 954 * 2070 類 FlowCountSort.java的實現描述:流量排序的mapreduce主實現類 * * @author arron 2018年12月1日 下午11:00:07 */ public class FlowCountSort { static class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text> { FlowBean bean = new FlowBean(); Text v = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 拿到的是上一個統計程序的輸出結果,已是各手機號的總流量信息 String line = value.toString(); String[] fields = line.split("\t"); String phoneNbr = fields[0]; long upFlow = Long.parseLong(fields[1]); long dFlow = Long.parseLong(fields[2]); bean.set(upFlow, dFlow); v.set(phoneNbr); context.write(bean, v); } } /** * 根據key來掉, 傳過來的是對象, 每一個對象都是不同的, 因此每一個對象都調用一次reduce方法 * * @author: 張政 * @date: 2016年4月11日 下午7:08:18 * @package_name: day07.sample */ static class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean> { // <bean(),phonenbr> @Override protected void reduce(FlowBean bean, Iterable<Text> values, Context context) throws IOException, InterruptedException { context.write(values.iterator().next(), bean); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); /* * conf.set("mapreduce.framework.name", "yarn"); * conf.set("yarn.resoucemanager.hostname", "mini1"); */ Job job = Job.getInstance(conf); /* job.setJar("/home/hadoop/wc.jar"); */ //指定本程序的jar包所在的本地路徑 job.setJarByClass(FlowCountSort.class); //指定本業務job要使用的mapper/Reducer業務類 job.setMapperClass(FlowCountSortMapper.class); job.setReducerClass(FlowCountSortReducer.class); //指定mapper輸出數據的kv類型 job.setMapOutputKeyClass(FlowBean.class); job.setMapOutputValueClass(Text.class); //指定最終輸出的數據的kv類型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //指定job的輸入原始文件所在目錄 FileInputFormat.setInputPaths(job, new Path(args[0])); //指定job的輸出結果所在目錄 Path outPath = new Path(args[1]); /* * FileSystem fs = FileSystem.get(conf); if(fs.exists(outPath)){ * fs.delete(outPath, true); } */ FileOutputFormat.setOutputPath(job, outPath); //將job中配置的相關參數,以及job所用的java類所在的jar包,提交給yarn去運行 /* job.submit(); */ boolean res = job.waitForCompletion(true); System.exit(res ? 0 : 1); } }
3、打包運行 oop
#提交hadoop集羣運行 hadoop jar flowsort_aaron.jar com.empire.hadoop.mr.flowsort.FlowCountSort /user/hadoop/flowcountount /flowsort #查看輸出結果目錄 hdfs dfs -ls /flowsort #瀏覽輸出結果 hdfs dfs -cat /flowsort/part-r-00000
運行效果圖:大數據
[hadoop@centos-aaron-h1 ~]$ hadoop jar flowsort_aaron.jar com.empire.hadoop.mr.flowsort.FlowCountSort /user/hadoop/flowcountount /flowsort 18/12/02 07:10:46 INFO client.RMProxy: Connecting to ResourceManager at centos-aaron-h1/192.168.29.144:8032 18/12/02 07:10:46 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 18/12/02 07:10:48 INFO input.FileInputFormat: Total input files to process : 1 18/12/02 07:10:48 INFO mapreduce.JobSubmitter: number of splits:1 18/12/02 07:10:48 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled 18/12/02 07:10:49 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1543705650872_0001 18/12/02 07:10:50 INFO impl.YarnClientImpl: Submitted application application_1543705650872_0001 18/12/02 07:10:50 INFO mapreduce.Job: The url to track the job: http://centos-aaron-h1:8088/proxy/application_1543705650872_0001/ 18/12/02 07:10:50 INFO mapreduce.Job: Running job: job_1543705650872_0001 18/12/02 07:11:00 INFO mapreduce.Job: Job job_1543705650872_0001 running in uber mode : false 18/12/02 07:11:00 INFO mapreduce.Job: map 0% reduce 0% 18/12/02 07:11:10 INFO mapreduce.Job: map 100% reduce 0% 18/12/02 07:11:23 INFO mapreduce.Job: map 100% reduce 100% 18/12/02 07:11:23 INFO mapreduce.Job: Job job_1543705650872_0001 completed successfully 18/12/02 07:11:23 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=801 FILE: Number of bytes written=396695 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=725 HDFS: Number of bytes written=594 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=6980 Total time spent by all reduces in occupied slots (ms)=8661 Total time spent by all map tasks (ms)=6980 Total time spent by all reduce tasks (ms)=8661 Total vcore-milliseconds taken by all map tasks=6980 Total vcore-milliseconds taken by all reduce tasks=8661 Total megabyte-milliseconds taken by all map tasks=7147520 Total megabyte-milliseconds taken by all reduce tasks=8868864 Map-Reduce Framework Map input records=21 Map output records=21 Map output bytes=753 Map output materialized bytes=801 Input split bytes=131 Combine input records=0 Combine output records=0 Reduce input groups=21 Reduce shuffle bytes=801 Reduce input records=21 Reduce output records=21 Spilled Records=42 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=402 CPU time spent (ms)=1890 Physical memory (bytes) snapshot=342441984 Virtual memory (bytes) snapshot=1694273536 Total committed heap usage (bytes)=137867264 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=594 File Output Format Counters Bytes Written=594
運行結果:
[hadoop@centos-aaron-h1 ~]$ hdfs dfs -ls /flowsort Found 2 items -rw-r--r-- 2 hadoop supergroup 0 2018-12-02 07:11 /flowsort/_SUCCESS -rw-r--r-- 2 hadoop supergroup 594 2018-12-02 07:11 /flowsort/part-r-00000 [hadoop@centos-aaron-h1 ~]$ hdfs dfs -cat /flowsort/part-r-00000 13502468823 36675 551745 588420 13925057413 55290 241215 296505 13726238888 12405 123405 135810 13726230503 12405 123405 135810 18320173382 47655 12060 59715 13560439658 10170 29460 39630 13660577991 34800 3450 38250 15013685858 18295 17690 35985 13922314466 15040 18600 33640 15920133257 15780 14680 30460 84138413 20580 7160 27740 13602846565 9690 14550 24240 18211575961 7635 10530 18165 15989002119 9690 900 10590 13560436666 5580 4770 10350 13926435656 660 7560 8220 13480253104 900 900 1800 13826544101 1320 0 1320 13926251106 1200 0 1200 13760778710 600 600 1200 13719199419 1200 0 1200
4、最後總結
細心的小夥伴們從上的mapreduce主代碼中確定會看出和以前的寫法有所差異,以下圖所示:
此處咱們以前都是在map方法裏面去申明對象,那麼以前的作法有什麼問題呢?那就是以前的代碼若是在數據不少的時候,咱們在調用map的時候回建立不少個對象,有可能會致使咱們內存溢出。可是,若是們向上面這樣寫,就只建立一個對象就夠了,在map中設置相應的值,然後序列換輸出去,而後依次重複前面的設置動做便可。注意,此處是由於咱們mapreduce會作序列化輸出,因此同一個對象序列化後只需的結果,並不影響。
最後寄語,以上是博主本次文章的所有內容,若是你們以爲博主的文章還不錯,請點贊;若是您對博主其它服務器大數據技術或者博主本人感興趣,請關注博主博客,而且歡迎隨時跟博主溝通交流。