分塊詳解

hzwer的9題
https://loj.ac/problem/6277
https://loj.ac/problem/6278
https://loj.ac/problem/6279
https://loj.ac/problem/6280
https://loj.ac/problem/6281
https://loj.ac/problem/6282
https://loj.ac/problem/6283
https://loj.ac/problem/6284
https://loj.ac/problem/6285

\(\text{例題會稍後放上}\)node

\(\huge \text{分塊是一種優雅的暴力}\)ios

\(\text{大概思想是這樣的:維護$\sqrt(n)$個塊 查詢的時候是查詢區間內的塊 若是有的部分不滿一個塊就用枚舉 常數較小}\)c++

\(\text{對於上面這個說明 我舉個簡單的例子: 假設n = 10000 那麼 每一個塊就是$\sqrt n$ = 100 每一個塊是}\)git

1~100
101~200
...
9901~10000

\(\text{假設要查詢 2 ~ 999的值}\)數組

\(\text{你只須要維護每一個 大小 爲 $\sqrt n$ 的塊 也就是 大小 爲 100 的塊 而後對$101$~$200$ - $801$~$900$這幾個塊查詢塊的值}\)
\(\text{而後暴力 $2$~$100$ 和 $901$ ~ $999$ 的值 }\)ui

\(\text{之因此稱爲優雅的暴力 分塊把樸素暴力的 $2$ ~ $999$ 改爲了 $200$ 複雜度左右的暴力}\)spa

\(\text{我的以爲 $2$~$999$是最壞狀況}\)c++11

\(\text{若是查詢 $1$~$1000$ 那麼分塊的優點就出來了}\)code

\(\text{我的以爲比線段樹簡單 思想比線段樹容易可是代碼長(小聲}\)排序

\(\text{通常來說的話 分塊和線段樹就差一個O2(由於線段樹的常數大}\)

\(\text{分塊的預處理是 將每個數字存入一個塊中 複雜度是O(N)}\)

\(\text{而後區間修改查詢什麼的 最多不超過}\) \(2 \ \sqrt(n)\)

\(\text{證實:一個塊的大小是}\)\(\sqrt(n)\) \(\text{那麼多出來的左區間和右區間的最壞狀況是 ($\sqrt(n)$) 因此易證}\)

\(\text{分塊的時間複雜度大概就是 }\) \(\theta (N + q * \sqrt(N))\)
(n指序列長度 q指查詢修改的操做次數)
\(\text{以上就是一個基本的分塊思想 簡單講 分塊比線段樹容易實現}\)

\(\text{分塊1}\)
分塊1是區間修改 單點查詢

咱們用一個數組維護塊

若是區間修改的時候 包含這個塊 那麼能夠把這個塊加上須要修改的值 若是是多出來的就直接暴力修改了

而後查詢的時候輸出所在塊修改的值 和 自己的值

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std ;
const int N = 50000 + 5 ;
const int Bl = 300 + 5 ;
struct node {
    int l , r ;
    int add ;
} ;
int n ;
int a[N] ;
node atag[Bl] ;
int bl[N] ; int unt ;
inline void change(int l , int r , int c) {
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++)
        a[i] += c ;
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++)
            a[i] += c ;
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++)
        atag[i].add += c ;
}
signed main() {
    ios::sync_with_stdio(false) ;
    cin >> n ;
    for(register int i = 1 ; i <= n ; i ++) cin >> a[i] ;
    unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) {
        bl[i] = (i - 1) / unt + 1 ;
    }
    for(register int i = 1 ; i <= n ; i ++) {
        int opt ;
        cin >> opt ;
        if(opt == 0) {
            int l , r , c ;
            cin >> l >> r >> c ;
            change(l , r , c) ;
        }
        else {
            int l , r , c ;
            cin >> l >> r >> c ;
            cout << a[r] + atag[bl[r]].add << endl ;
        }
    }
    return 0 ;
}

\(\text{分塊2}\)

分塊二求的是區間修改 區間查詢小於\(c^2\)的最大數
vector 每次修改完重構一下左右塊就好了

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int read() {
    register int x = 0;
    register int f = 1;
    register char c;
#define gc c = getchar()
    while (isspace(gc))
        ;
    c == '-' ? gc, f = -1 : 0;
    while (x = (x << 3) + (x << 1) + (c & 15), isdigit(gc))
        ;
    return x * f;
}
const int N = 50000 + 5;
const int Bl = 300 + 5;
int n;
int a[N];
struct node {
    int add;
    std::vector<int> v;
};
node atag[Bl];
int unt;
int bl[N];
inline void reset(int x) {
    atag[x].v.clear();
    for (register int i = (x - 1) * unt + 1; i <= min(x * unt, n); i++) atag[x].v.push_back(a[i]);
    sort(atag[x].v.begin(), atag[x].v.end());
    return;
}
inline void change(int l, int r, int c) {
    for (register int i = l; i <= min(bl[l] * unt, r); i++) a[i] += c;
    reset(bl[l]);
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++) a[i] += c;
        reset(bl[r]);
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) atag[i].add += c;
}
inline int query(int l, int r, LL c) {
    int ans = 0;
    for (register int i = l; i <= min(bl[l] * unt, r); i++)
        if (a[i] + atag[bl[l]].add < c)
            ans++;
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++)
            if (a[i] + atag[bl[r]].add < c)
                ans++;
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) {
        int s = c - atag[i].add;
        ans += lower_bound(atag[i].v.begin(), atag[i].v.end(), s) - atag[i].v.begin();
    }
    return ans;
}
signed main() {
    n = read();
    unt = sqrt(n);
    for (register int i = 1; i <= n; i++) a[i] = read();
    for (register int i = 1; i <= n; i++) bl[i] = (i - 1) / unt + 1;
    for (register int i = 1; i <= n; i++) {
        atag[bl[i]].v.push_back(a[i]);
    }
    for (register int i = 1; i <= bl[n]; i++) {
        sort(atag[i].v.begin(), atag[i].v.end());
    }
    for (register int i = 1; i <= n; i++) {
        int opt = read(), L = read(), R = read(), c = read();
        if (opt)
            printf("%lld\n", query(L, R, c * c));
        else
            change(L, R, c);
    }
    return 0;
}

\(\text{分塊3}\)

分塊3 區間修改 詢問區間內小於某個值 x的前驅即比x小的最大數

一樣使用一個set維護
而後用\(lower _ \ bound\)二分
(部分C++11內容

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int read() {
    register int x = 0;
    register int f = 1;
    register char c;
#define gc c = getchar()
    while (isspace(gc))
        ;
    c == '-' ? gc, f = -1 : 0;
    while (x = (x << 3) + (x << 1) + (c & 15), isdigit(gc))
        ;
    return x * f;
}
const int N = 100000 + 5;
const int Bl = 400 + 5;
int n;
int a[N];
struct node {
    int add;
};
node atag[Bl];
int unt;
int bl[N];
set<int> st[Bl];
inline void change(int l, int r, int c) {
    for (register int i = l; i <= min(bl[l] * unt, r); i++) {
        st[bl[i]].erase(a[i]);
        a[i] += c;
        st[bl[i]].insert(a[i]);
    }
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++) {
            st[bl[i]].erase(a[i]);
            a[i] += c;
            st[bl[i]].insert(a[i]);
        }
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) atag[i].add += c;
}
inline int query(int l, int r, int c) {
    int ans = -1;
    for (register int i = l; i <= min(bl[l] * unt, r); i++)
        if (a[i] + atag[bl[l]].add < c)
            ans = max(a[i] + atag[bl[l]].add, ans);
    if (bl[l] != bl[r]) {
        for (register int i = (bl[r] - 1) * unt + 1; i <= r; i++)
            if (a[i] + atag[bl[r]].add < c)
                ans = max(a[i] + atag[bl[l]].add, ans);
    }
    for (register int i = bl[l] + 1; i <= bl[r] - 1; i++) {
        int s = c - atag[i].add;
        auto find = st[i].lower_bound(s);
        if (find == st[i].begin()) continue ;
        find--;
        ans = max(ans, *find + atag[i].add);
    }
    return ans;
}
signed main() {
    n = read();
    unt = sqrt(n);
    for (register int i = 1; i <= n; i++) a[i] = read();
    for (register int i = 1; i <= n; i++) bl[i] = (i - 1) / unt + 1;
    for (register int i = 1; i <= n; i++) {
        st[bl[i]].insert(a[i]);
    }
    for (register int i = 1; i <= n; i++) {
        int opt = read(), L = read(), R = read(), c = read();
        if (opt)
            printf("%d\n", query(L, R, c));
        else
            change(L, R, c);
    }
    return 0;
}

\({\text{分塊4}}\)

分塊4是區間修改 區間求和
而後 區間和 % \(c+1\)

咱們考慮使用一個數組維護區間和 而後用一個數組維護整個塊的修改狀況

維護區間和指的是 暴力修改 的部分

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ;
    c == '-' ? gc , f = -1 : 0 ;
    while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

int n ;
const int N = 50000 + 5 ;
int a[N] ;
int bl[N] ;
int sum[N] ;
int atag[N] ;
int unt ;
inline void change(int l , int r , int c) {
    for(register int i = l ; i <= min(r , bl[l] * unt) ; i ++) {
        a[i] += c ;
        sum[bl[l]] += c ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            a[i] += c ;
            sum[bl[r]] += c ;
        }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) atag[i] += c ;
    return ;
}
inline int query(int l , int r , int c) { int ans = 0 ;
    for(register int i = l ; i <= min(r , bl[l] * unt) ; i ++) {
        ans += a[i] + atag[bl[l]] ;
        ans %= c ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            ans += a[i] + atag[bl[r]] ;
            ans %= c ;
        }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++)
        ans = (ans + sum[i] + atag[i] * unt) % c ;
    return ans ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int i = 1 ; i <= n ; i ++) {
        sum[bl[i]] += a[i] ;
    }
    for(register int i = 1 ;i <= n ; i ++) {
        int opt = read() ;
        if(opt == 0) {
            int l = read() , r = read() , c = read() ;
            change(l , r , c) ;
        }
        if(opt == 1) {
            int l = read() , r = read() , c = read() ;
            printf("%lld\n" , query(l , r , c + 1)) ;
        }
    }
    return 0 ;
}

\(\text{分塊5}\)

分塊5是區間開方 而後區間查詢
對於每一個塊 大小最大是\(2^{31}\)

\(log(31) ≈ 5\)
因此能夠得出一個塊最多開方6次
也就是最大是\(6n\)
因此對於區間開方 對一個塊進行開方 而後重構這個塊的總和

也就是能夠得出 大塊修改並用一個flg數組標記這個塊有沒有大於1的數字(若是大於1的話還能夠開方
這樣能夠避免不少次重複開方
那麼對於沒有完整塊的左右區間 咱們考慮先減掉原數字而後加上開方後的數字(對於乘法操做也是同樣的
區間查詢上面講過了(將塊的總和加上 而後暴力把左右區間求和)

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ;
    c == '-' ? gc , f = -1 : 0 ;
    while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

int n ;
const int N = 50000 + 5 ;
int a[N] ;
int bl[N] ;
int flg[N] ;
int sum[N] ;
int unt ;
inline void Reset(int x) {
    if(flg[x]) return ;
    flg[x] = 1 ;
    sum[x] = 0 ;
    for(register int i = (x - 1) * unt + 1 ; i <= x * unt ; i ++) {
        a[i] = sqrt(a[i]) ;
        sum[x] += a[i] ;
        if(a[i] > 1) flg[x] = 0 ;
    }
    return ;
}
inline void change(int l , int r , int c) {
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        sum[bl[l]] -= a[i] ;
        a[i] = sqrt(a[i]) ;
        sum[bl[l]] += a[i] ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            sum[bl[r]] -= a[i] ;
            a[i] = sqrt(a[i]) ;
            sum[bl[r]] += a[i] ;
        }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) Reset(i) ;
    return ;
}
inline int query(int l , int r , int c) { int ans = 0 ;
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        ans += a[i] ;
    }
    if(bl[l] != bl[r])
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) ans += a[i] ;
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) ans += sum[i] ;
    return ans ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int i = 1 ; i <= n ; i ++) { sum[bl[i]] += a[i] ; }
    for(register int i = 1 ; i <= n ; i ++) {
        int opt = read() ;
        if(opt == 0) {
            int l , r , c ;
            l = read() ; r = read() ; c = read() ;
            change(l , r , c) ;
        }
        if(opt == 1) {
            int l , r , c ;
            l = read() ; r = read() ; c = read() ;
            printf("%lld\n" , query(l , r , c)) ;
        }
    }
    return 0 ;
}

\(\text{分塊6}\)
分塊6是能夠區間插入一個數字 而後查詢某個位置
(其實用不到分塊 \(vector\) 能夠直接作)
只是由於這一題沒有區間查詢 因此能夠 \(vector\) 水過去
若是想好好學分塊就使用分塊的作法
當某個塊大於 20 個塊的時候 就重構塊
否則查詢的時候比較費勁 並且暴力複雜度比較高

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long
inline int read() { register int x = 0 ; register int f = 1 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ;
    c == '-' ? gc , f = -1 : 0 ;
    while(x = (x << 1) + (x << 3) + (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}
int n ;
int unt ;
const int N = 200000 + 5 ;
int a[N] ;
std::vector< int > v[N] ;
int st[N] ;
int top = 0 ; int m = 0 ;
pair < int  , int > query(int b) {
    int x = 1 ;
    for ( ; b > v[x].size() ; ) b -= v[x ++].size() ;
    return make_pair(x , b - 1) ;
}
inline void Rebuild() {
    top = 0 ;
    for(register int i = 1 ; i <= m ; i ++) {
        for(auto j : v[i]) st[++ top] = j ;
        v[i].clear() ;
    }
    int blo = sqrt(top) ;
    for(register int i = 1 ; i <= top ; i ++) {
        v[(i - 1) / blo + 1].push_back(st[i]) ;
    }
    m = (top - 1) / blo + 1 ;
}
inline void Insert(int x , int y) {
    pair < int , int > p = query(x) ;
    v[p.first].insert(v[p.first].begin() + p.second , y) ;
    if(v[p.first].size() > 20 * unt) Rebuild() ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) v[(i - 1) / unt + 1].push_back(a[i]) ;
    m = (n - 1) / unt + 1 ;
    for(register int i = 1 ; i <= n ; i ++) {
        int opt = read() ;
        if(opt == 0) {
            int l = read() , r = read() , c = read() ;
            Insert(l , r) ;
        }
        if(opt == 1) {
            int l = read() , r = read() , c = read() ;
            pair < int , int > p = query(r) ;
            printf("%d\n" , v[p.first][p.second]) ;
        }
    }
    return 0 ;
}

\(\text{分塊7}\)
分塊7是一題 \(\text{區間乘法 區間加法 單點查詢}\) 的題目
那麼咱們只須要維護一下區間的值 乘法的值 加法的值就能夠
若是乘法那麼就須要把加法的值乘上一個值
不過在每次修改的時候 須要\(\text{重構這個不完整的塊所在的塊}\)
(好拗口 反正就是在\(左,右區間\)所在的塊 而後把乘的值歸1 而後加法的值清0
這樣的話複雜度仍然仍是 \(\sqrt n\)
根據這個思路的話 我寫了一個區間查詢的
我告訴我旁邊的人:知道什麼叫作單點查詢嗎
-- \(query(b,b)\)

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long

#define rep(i , j , n) for(register int i=j;i<=n;i++)
#define Rep(i , j , n) for(register int i=j;i>=n;i--)
#define gc c = getchar()
#define int long long
inline int read() { register int x = 0 , f = 1 ; register char c ;
    while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
    while((x *= 10) += (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

using namespace std ;
int n ;
const int N = 100000 + 5 ;
const int Unt = 2000 ;
const int p = 10000 + 7 ;
int a[N] ;
int unt ;
int block[N] ;
int sum[Unt] ;
int mul[Unt] ;
int size[Unt] ;
int ans[Unt] ;
inline void reset(int x) {
    for(register int i=(x - 1) * unt + 1 ; i <= min(n , x * unt) ; i ++) {
        a[i] = (a[i] * mul[x] + sum[x]) % p ;
    }
    sum[x] = 0 ; mul[x] = 1 ;
}
inline void change_mul(int l , int r , int x) {
    reset(block[l]) ;
    for(register int i=l;i<=min(r , block[l] * unt) ; i ++) {
        ans[block[l]] -= a[i] ;
        a[i] *= x ;
        a[i] %= p ;
        ans[block[l]] += a[i] ;
        ans[block[l]] %= p ;
    }
    if(block[l] != block[r]) {
        reset(block[r]) ;
        for(register int i=(block[r] - 1) * unt + 1 ; i <= r ; i ++) {
            ans[block[r]] -= a[i] ;
            a[i] *= x ;
            a[i] %= p ;
            ans[block[r]] += a[i] ;
            ans[block[r]] %= p ;
        }
        for(register int i=block[l] + 1 ; i <= block[r] - 1 ; i ++) {
            sum[i] *= x ;
            sum[i] %= p ;
            mul[i] *= x ;
            mul[i] %= p ;
            ans[i] *= x ;
            ans[i] %= p ;
        }
    }
}
inline void change_sum(int l , int r , int x) {
    reset(block[l]) ;
    for(register int i=l ; i <= min(r , block[l] * unt) ; i ++) {
        a[i] += x ;
        a[i] %= p ;
        ans[block[l]] += x ;
    }
    if(block[l] != block[r]) {
        reset(block[r]) ;
        for(register int i = (block[r] - 1) * unt + 1 ; i <= r ; i ++) {
            a[i] += x ;
            a[i] %= p ;
            ans[block[r]] += x ;
        }
        for(register int i=block[l] + 1 ; i <= block[r] - 1 ; i ++) {
            sum[i] += x ;
            sum[i] %= p ;
            ans[i] += x * size[i] ;
        }
    }
}
inline int Query(int l , int r) {
    int Ans = 0 ;
    for(register int i=l;i<=min(r , block[l] * unt) ; i ++)
        Ans += (a[i] * mul[block[l]] + sum[block[l]] ) % p ;
    if(block[l] != block[r]) {
        for(register int i = (block[r] - 1) * unt + 1 ; i <= r ; i ++)
            Ans += (a[i] * mul[block[r]] + sum[block[r]] ) % p ;
        for(register int i = block[l] + 1 ; i <= block[r] - 1 ; i ++)
            Ans += ans[i] ;
    }
    return Ans % p ;
}
signed main() {
    n = read() ;
    unt = sqrt(n) ;
    for(register int i=1;i<=n;i++) a[i] = read() ;
    for(register int i=1;i<=n;i++) {
        block[i] = (i - 1) / unt + 1 ;
        ans[block[i]] += a[i] ;
        size[block[i]] ++ ;
    }
    for(register int i=1;i<=block[n];i++) mul[i] = 1 ;
    for(register int i=1;i<=n;i++) {
        int opt = read() ;
        if(opt == 0) {
            int a = read() , b = read() , c = read() ;
            change_sum(a , b , c) ;
        }
        if(opt == 1) {
            int a = read() , b = read() , c = read() ;
            change_mul(a , b , c) ;
        }
        if(opt == 2) {
            int a = read() , b = read() , c = read() ;
            printf("%lld\n" , Query(b , b)) ;
         }
    }
    return 0 ;
}

\(\text{分塊8}\)

分塊8的話是一個 查詢區間有多少個\(c\) 並把整個區間改爲 \(c\)

一樣咱們考慮判重 把每一個塊用一個\(flg\)數組記錄當前值
而後對於左右區間的修改 把左右區間所在的塊重構成以前的\(flg\)
而後修改爲c 再判斷左右區間有多少個c
那麼對於\(\text{完整的塊}\) 咱們只須要 加上一個塊的長度
這樣就能夠作到判重的效果了
對於 \(\text{完整的塊}\) 咱們只須要修改當前塊的\(flg\)值就能夠了

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include<bits/stdc++.h>

using namespace std ;
#define int long long

#define rep(i , j , n) for(register int i=j;i<=n;i++)
#define Rep(i , j , n) for(register int i=j;i>=n;i--)
#define gc c = getchar()
#define int long long
inline int read() { register int x = 0 , f = 1 ; register char c ;
    while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
    while((x *= 10) += (c ^ 48) , isdigit(gc)) ;
    return x * f ;
}

const int N = 100000 + 5 ;
int n ;
int a[N] ;
int unt ;
int flg[N] ;
int bl[N] ;
inline void reset(int x) {
    if(flg[x] == -1) return ;
    for(register int i = (x - 1) * unt + 1 ; i <= x * unt ; i ++) a[i] = flg[x] ;
    flg[x] = -1 ;
}
inline int solve(int l , int r , int c) { int ans = 0 ;
    reset(bl[l]) ;
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) {
        if(a[i] != c) a[i] = c ;
        else ans ++ ;
    }
    if(bl[l] != bl[r]) {
        reset(bl[r]) ;
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) {
            if(a[i] != c) a[i] = c ;
            else ans ++ ;
        }
    }
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) {
        if(flg[i] != -1) {
            if(flg[i] != c) flg[i] = c ;
            else ans += unt ;
        }
        else {
            for(register int j = (i - 1) * unt + 1 ; j <= i * unt ; j ++)
                if(a[j] != c) a[j] = c ;
                else ans ++ ;
            flg[i] = c ;
        }
    }
    return ans ;
}
signed main() {
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) a[i] = read() ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int i = 1 ; i <= bl[n] ; i ++) flg[i] = -1 ;
    for(register int i = 1 ; i <= n ; i ++) {
        int l = read() , r = read() , c = read() ;
        printf("%lld\n" , solve(l , r , c)) ;
    }
    return 0 ;
}

\(\text{分塊9}\)
前置知識:離線莫隊
分塊9的話我沒想到怎麼在線作
就是按每次查詢的 \(l\) 排序 而後瞎搞
(大概是一個莫隊的思想

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#pragma GCC diagnostic error "-std=c++11"
#include <bits/stdc++.h>

using namespace std;

#define rep(i, j, n) for (register int i = j; i <= n; i++)
#define Inc(i, j, n) for (register int i = j; i <= n; i++)
#define Rep(i, j, n) for (register int i = j; i >= n; i--)

inline int read() {
    register int x = 0, f = 1;
    register char c;
#define gc c = getchar()
    while (isspace(gc))
        ;
    c == '-' ? f = -1, gc : 0;
    while ((x *= 10) += (c ^ 48), isdigit(gc))
        ;
    return x * f;
}
const int N = 1e5;
int n, siz, k[N + 10], bl[N + 10];
struct Que {
    int L, r, idx;
} q[N + 10];
bool cmp(const Que &A, const Que &B) {
    return bl[A.L] ^ bl[B.L] ? A.L < B.L : A.r < B.r;
}
inline void init() {
    n = read() ;
    Inc(i, 1, n) k[i] = read() ;
    Inc(i, 1, n) {
        int x, y;
        x = read() , y = read() ;
        q[i] = (Que) {
            x, y, i
        };
    }
    siz = sqrt(n);
    Inc(i, 1, n) bl[i] = (i - 1) / siz + 1;
    sort(q + 1, q + 1 + n, cmp);
}
int rp[N + 10];
inline void disc() {
    int tmp[N + 10];
    Inc(i, 1, n) tmp[i] = k[i];
    sort(tmp + 1, tmp + 1 + n);
    int len = unique(tmp + 1, tmp + 1 + n) - tmp - 1;
    Inc(i, 1, n) rp[i] = lower_bound(tmp + 1, tmp + 1 + len, k[i]) - tmp;
}
int cur_ans, cur_num, Ans[N + 10], num[N + 10];
inline void addr(int x) {
    ++num[rp[x]];
    if (num[rp[x]] >= cur_num) {
        if (num[rp[x]] == cur_num && k[x] < cur_ans)
            cur_ans = k[x];
        else if (num[rp[x]] > cur_num)
            cur_ans = k[x], cur_num = num[rp[x]];
    }
}
inline void addl(int x, int &ans, int &Num) {
    ++num[rp[x]];
    if (num[rp[x]] >= Num) {
        if (num[rp[x]] == Num && k[x] < ans)
            ans = k[x];
        else if (num[rp[x]] > Num)
            ans = k[x], Num = num[rp[x]];
    }
}
inline void remove(int x) {
    --num[rp[x]];
}
inline void solv() {
    int L, r, lim;
    Inc(i, 1, n) {
        if (bl[q[i].L] ^ bl[q[i - 1].L]) {
            memset(num, 0, sizeof(num));
            L = lim = bl[q[i].L] * siz + 1;
            r = bl[q[i].L] * siz;
            cur_ans = cur_num = 0;
        }
        if (bl[q[i].L] == bl[q[i].r]) {
            int ans, nownum = 0;
            Inc(j, q[i].L, q[i].r)++ num[rp[j]];
            Inc(j, q[i].L, q[i].r) if (num[rp[j]] >= nownum) {
                if (num[rp[j]] == nownum && k[j] < ans)
                    ans = k[j];
                else if (num[rp[j]] > nownum)
                    ans = k[j], nownum = num[rp[j]];
            }
            Inc(j, q[i].L, q[i].r)-- num[rp[j]];
            Ans[q[i].idx] = ans;
            continue;
        }
        while (r < q[i].r) addr(++r);
        int now = cur_ans, nownum = cur_num;
        while (L > q[i].L) addl(--L, now, nownum);
        Ans[q[i].idx] = now;
        while (L < lim) remove(L++);
    }
    Inc(i, 1, n) printf("%d\n" , Ans[i]) ;
}
signed main() {
    init();
    disc();
    solv();
    return 0;
}

\(\text{例題}\)

https://loj.ac/problem/10117

\(\text{LOJ10117}\)

這題就是一個裸的樹狀數組 可是能夠用分塊作 好像更方便呢

// Isaunoya
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define rep(i , j , n) for(register int i = j ; i <= n ; i ++)
#define Rep(i , j , n) for(register int i = j ; i >= n ; i --)
#define to(u) for(register int i = head[u] ; i ; i = edge[i].nxt)

inline int read() { register int x = 0 , f = 1 ; register char c ;
#define gc c = getchar()
    while(isspace(gc)) ; c == '-' ? f = -1 , gc : 0 ;
    while(x = (x << 1) + (x << 3) + (c & 15) , isdigit(gc)) ;
    return x * f ;
}

using namespace std ;
int n ;
const int N = 1e5 + 10 ;
int a[N] ;

int atag[N] ;
int bl[N] ;
int unt ;
inline void change(int l , int r) {
    for(register int i = l ; i <= min(bl[l] * unt , r) ; i ++) a[i] ^= 1 ;
    if(bl[l] != bl[r]) 
        for(register int i = (bl[r] - 1) * unt + 1 ; i <= r ; i ++) a[i] ^= 1 ;
    for(register int i = bl[l] + 1 ; i <= bl[r] - 1 ; i ++) atag[i] ^= 1 ;
    return ;
}
signed main() {
//  freopen(".in" , "r" , stdin) ; freopen(".out" , "w" , stdout) ;
    n = read() ; unt = sqrt(n) ;
    for(register int i = 1 ; i <= n ; i ++) bl[i] = (i - 1) / unt + 1 ;
    for(register int q = read() ; q -- ; ) {
        int opt = read() ;
        if(opt & 1) {
            int l = read() , r = read() ;
            change(l , r) ;
        }
        else {
            int x = read() ;
            printf("%lld\n" , a[x] ^ atag[bl[x]]) ;
        }
    }
    return 0 ;
}
https://www.luogu.org/problem/P3870
https://www.luogu.org/problem/P2574 // 雙倍經驗
https://www.luogu.org/problem/P2801
相關文章
相關標籤/搜索