process.tar.gz

exec1.c

#include <stdio.h> #include <unistd.h> int main() { char *arglist[3]; arglist[0] = "ls"; arglist[1] = "-l"; arglist[2] = 0 ;//NULL printf("* * * About to exec ls -l\n"); execvp( "ls" , arglist ); printf("* * * ls is done. bye"); return 0; }
  • 頭文件:#includeshell

  • 定義函數:int execvp(const char file, char const argv []);數組

  • 函數說明:execvp()會從PATH 環境變量所指的目錄中查找符合參數file 的文件名, 找到後便執行該文件, 而後將第二個參數argv 傳給該欲執行的文件。併發

  • 返回值 若是執行成功則函數不會返回,執行失敗則直接返回-1,失敗緣由存於errno中。函數

  • 此處執行的execvp("ls",arglist);就會從PATH環境變量所指的目錄中尋找ls的文件名,找到後執行ls,而後將-l傳給該文件。ui

  • 運行結果以下:
    spa

  • 跟ls -l命令相比,發現exec1的結果並未將可執行文件、文件夾與文件區分開來。指針

exec2.c

#include <stdio.h> #include <unistd.h> int main() { char *arglist[3]; arglist[0] = "ls"; arglist[1] = "-l"; arglist[2] = 0 ; printf("* * * About to exec ls -l\n"); execvp( arglist[0] , arglist ); printf("* * * ls is done. bye\n"); }

與exec1.c執行的功能是同樣的,僅僅是在調用execvp函數時,用arglist[0]替換"ls",實現用數組傳參。code

  • 運行結果:
    進程

    exec3.c

    include

    include

    int main()
    {
    char arglist[3];
    char 
    myenv[3];
    myenv[0] = "PATH=:/bin:";
    myenv[1] = NULL;ip

    arglist[0] = "ls";
    arglist[1] = "-l";
    arglist[2] = 0 ;
    printf("* * * About to exec ls -l\n");
    // execv( "/bin/ls" , arglist );
    // execvp( "ls" , arglist );
    // execvpe("ls" , arglist, myenv);

    execlp("ls", "ls", "-l", NULL);
    printf("* * * ls is done. bye\n");
    }
  • 該程序運用了execlp函數

  • 表頭文件 #include

  • 定義函數 int execlp(const char * file,const char * arg,……);

  • 函數說明 execlp()會從PATH 環境變量所指的目錄中查找符合參數file的文件名,找到後便執行該文件,而後將第二個之後的參數當作該文件的argv[0]、argv[1]……,最後一個參數必須用空指針(NULL)做結束。

  • 返回值 若是執行成功則函數不會返回,執行失敗則直接返回-1,失敗緣由存於errno 中。

  • 因此execlp("ls", "ls", "-l", NULL)等同於execvp( "ls" , arglist ),其中arglist[0] = "ls";arglist[1] = "-l"; arglist[2] = 0 ;

  • 運行結果:

forkdemo1.c

#include <stdio.h> #include <sys/types.h> #include <unistd.h> int main() { int ret_from_fork, mypid; mypid = getpid(); printf("Before: my pid is %d\n", mypid); ret_from_fork = fork(); sleep(1); printf("After: my pid is %d, fork() said %d\n", getpid(), ret_from_fork); return 0; }
  • getpid()用來取得目前進程的進程識別碼。
  • 先打印當前的進程識別碼
  • 用fork()函數運行父進程,打印父進程識別碼,而後再打印子進程識別碼,由於子進程返回值爲0,因此打印ret_from_fork=0;
  • 結果以下:

forkdemo2.c

#include <stdio.h> #include <unistd.h> int main() { printf("before:my pid is %d\n", getpid() ); fork(); fork(); printf("aftre:my pid is %d\n", getpid() ); return 0; }
  • 運行了兩次fork(),因此應該打印4個after結果,1個before結果。
  • 結果以下:

forkdemo3.c

#include <stdio.h> #include <stdlib.h> #include <unistd.h> int main() { int fork_rv; printf("Before: my pid is %d\n", getpid()); fork_rv = fork(); /* create new process */ if ( fork_rv == -1 ) /* check for error */ perror("fork"); else if ( fork_rv == 0 ){ printf("I am the child. my pid=%d\n", getpid()); exit(0); } else{ printf("I am the parent. my child is %d\n", fork_rv); exit(0); } return 0; }
  • 先打印一個Before,顯示當前進程識別碼。
  • 進行父進程,獲得子進程識別碼並打印。
  • 再進行子進程,打印當前進程識別碼。
  • 結果以下:

forkdemo4.c

#include <stdio.h> #include <stdlib.h> #include <unistd.h> int main() { int fork_rv; printf("Before: my pid is %d\n", getpid()); fork_rv = fork(); /* create new process */ if ( fork_rv == -1 ) /* check for error */ perror("fork"); else if ( fork_rv == 0 ){ printf("I am the child. my pid=%d\n", getpid()); printf("parent pid= %d, my pid=%d\n", getppid(), getpid()); exit(0); } else{ printf("I am the parent. my child is %d\n", fork_rv); sleep(10); exit(0); } return 0; }
  • getppid()用來取得目前進程的父進程識別碼。
  • 先打印一個Before,顯示當前進程識別碼。
  • 進行父進程,打印其對應子進程的識別碼。
  • 再進行子進程,打印子進程當前的識別碼與其對應的父進程的識別碼。

  • 運行結果:

forkgdb.c

#include <stdio.h> #include <stdlib.h> #include <unistd.h> int gi=0; int main() { int li=0; static int si=0; int i=0; pid_t pid = fork(); if(pid == -1){ exit(-1); } else if(pid == 0){ for(i=0; i<5; i++){ printf("child li:%d\n", li++); sleep(1); printf("child gi:%d\n", gi++); printf("child si:%d\n", si++); } exit(0); } else{ for(i=0; i<5; i++){ printf("parent li:%d\n", li++); printf("parent gi:%d\n", gi++); sleep(1); printf("parent si:%d\n", si++); } exit(0); } return 0; }
  • 父進程先打印一個再休息一秒,子進程打印兩個再休息一秒,兩個進程併發,因此出現parent li:0;parent gi:0;接下來不是parent si:0;而是child li:0。

  • 運行結果

psh1.c

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #define MAXARGS 20 #define ARGLEN 100 int execute( char *arglist[] ) { execvp(arglist[0], arglist); perror("execvp failed"); exit(1); } char * makestring( char *buf ) { char *cp; buf[strlen(buf)-1] = '\0'; cp = malloc( strlen(buf)+1 ); if ( cp == NULL ){ fprintf(stderr,"no memory\n"); exit(1); } strcpy(cp, buf); return cp; } int main() { char *arglist[MAXARGS+1]; int numargs; char argbuf[ARGLEN]; numargs = 0; while ( numargs < MAXARGS ) { printf("Arg[%d]? ", numargs); if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' ) arglist[numargs++] = makestring(argbuf); else { if ( numargs > 0 ){ arglist[numargs]=NULL; execute( arglist ); numargs = 0; } } } return 0; }
  • 該函數的功能爲輸入命令,用回車表示結束命令的輸入,而後將它們傳入arglist之中,利用execute來調用執行命令。

  • 運行結果:

psh2.c

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #include <signal.h> #define MAXARGS 20 #define ARGLEN 100 char *makestring( char *buf ) { char *cp; buf[strlen(buf)-1] = '\0'; cp = malloc( strlen(buf)+1 ); if ( cp == NULL ){ fprintf(stderr,"no memory\n"); exit(1); } strcpy(cp, buf); return cp; } void execute( char *arglist[] ) { int pid,exitstatus; pid = fork(); switch( pid ){ case -1: perror("fork failed"); exit(1); case 0: execvp(arglist[0], arglist); perror("execvp failed"); exit(1); default: while( wait(&exitstatus) != pid ) ; printf("child exited with status %d,%d\n", exitstatus>>8, exitstatus&0377); } } int main() { char *arglist[MAXARGS+1]; int numargs; char argbuf[ARGLEN]; numargs = 0; while ( numargs < MAXARGS ) { printf("Arg[%d]? ", numargs); if ( fgets(argbuf, ARGLEN, stdin) && *argbuf != '\n' ) arglist[numargs++] = makestring(argbuf); else { if ( numargs > 0 ){ arglist[numargs]=NULL; execute( arglist ); numargs = 0; } } } return 0; }
  • 多加了循環判斷的部分,使程序可以一直運行。即至關於咱們所使用的shell同樣。
  • 運行結果:

testbuf1.c

#include <stdio.h> #include <stdlib.h> int main() { printf("hello"); fflush(stdout); while(1); }
  • 輸出hello,然後一直空循環,不退出程序的執行。
  • fflush(stdout)跟fflush(stdin)相似,是對標準輸出流的清理,可是它並非把數據丟掉,而是及時地打印數據到屏幕上.
  • 運行結果:

testbuf2.c

#include <stdio.h> int main() { printf("hello\n"); while(1); }
  • 運行結果:

testbuf3.c

#include <stdio.h> int main() { fprintf(stdout, "1234", 5); fprintf(stderr, "abcd", 4); }
  • 將1234以標準輸出流輸出,將abcd以標準錯誤流輸出。
  • 運行結果:

testpid.c

#include <stdio.h> #include <unistd.h> #include <sys/types.h> int main() { printf("my pid: %d \n", getpid()); printf("my parent's pid: %d \n", getppid()); return 0; }
  • getpid獲得當前進程的標識碼
  • getppid獲得當前進程父進程的標識碼
  • 運行結果:

testpp.c

#include <stdio.h> #include <stdlib.h> int main() { char **pp; pp[0] = malloc(20); return 0; }
  • 運行結果:

  • 段錯誤 通常是非法訪問內存形成的

  • 核心已轉儲 (core dump) -- 內存清除,早期的內存用磁芯存儲器

testsystem.c

#include <stdlib.h> int main ( int argc, char *argv[] ) { system(argv[1]); system(argv[2]); return EXIT_SUCCESS; }
  • system()會調用fork()產生子進程,由子進程來調用/bin/sh-c
  • string來執行參數string字符串所表明的命令,此命令執行完後隨即返回原調用的進程。在調用system()期間SIGCHLD 信號會被暫時擱置,SIGINT和SIGQUIT 信號則會被忽略。
  • 返回值 若是system()在調用/bin/sh時失敗則返回127,其餘失敗緣由返回-1。若參數string爲空指針(NULL),則返回非零值。
  • 運行兩個命令
  • 運行結果:

waitdemo1.c

#include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define DELAY 4 void child_code(int delay) { printf("child %d here. will sleep for %d seconds\n", getpid(), delay); sleep(delay); printf("child done. about to exit\n"); exit(17); } void parent_code(int childpid) { int wait_rv=0; /* return value from wait() */ wait_rv = wait(NULL); printf("done waiting for %d. Wait returned: %d\n", childpid, wait_rv); } int main() { int newpid; printf("before: mypid is %d\n", getpid()); if ( (newpid = fork()) == -1 ) perror("fork"); else if ( newpid == 0 ) child_code(DELAY); else parent_code(newpid); return 0; }
  • wait()會暫時中止目前進程的執行,直到有信號來到或子進程結束。若是在調用wait()時子進程已經結束,則wait()會當即返回子進程結束狀態值。子進程的結束狀態值會由參數status 返回,而子進程的進程識別碼也會一快返回。若是不在乎結束狀態值,則參數 status能夠設成NULL。
  • 返回值 若是執行成功則返回子進程識別碼(PID),若是有錯誤發生則返回-1。失敗緣由存於errno中。
  • 將子進程中止,若是執行成功則返回子進程識別碼。
  • 運行結果:

waitdemo2.c

#include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define DELAY 10 void child_code(int delay) { printf("child %d here. will sleep for %d seconds\n", getpid(), delay); sleep(delay); printf("child done. about to exit\n"); exit(27); } void parent_code(int childpid) { int wait_rv; int child_status; int high_8, low_7, bit_7; wait_rv = wait(&child_status); printf("done waiting for %d. Wait returned: %d\n", childpid, wait_rv); high_8 = child_status >> 8; /* 1111 1111 0000 0000 */ low_7 = child_status & 0x7F; /* 0000 0000 0111 1111 */ bit_7 = child_status & 0x80; /* 0000 0000 1000 0000 */ printf("status: exit=%d, sig=%d, core=%d\n", high_8, low_7, bit_7); } int main() { int newpid; printf("before: mypid is %d\n", getpid()); if ( (newpid = fork()) == -1 ) perror("fork"); else if ( newpid == 0 ) child_code(DELAY); else parent_code(newpid); } 
  • 輸出子進程結束的狀態(exit、sig、core)。
  • 運行結果:

argv文件夾

  • 包含函數argtest.c argv.h freemakeargv.c makeargv.c
  • 相似於psh1的用法,在運行程序時須要加上要運行的代碼。
  • 運行結果:

environ.c

#include <stdio.h> #include <stdlib.h> int main(void) { printf("PATH=%s\n", getenv("PATH")); setenv("PATH", "hello", 1); printf("PATH=%s\n", getenv("PATH")); #if 0 printf("PATH=%s\n", getenv("PATH")); setenv("PATH", "hellohello", 0); printf("PATH=%s\n", getenv("PATH")); printf("MY_VER=%s\n", getenv("MY_VER")); setenv("MY_VER", "1.1", 0); printf("MY_VER=%s\n", getenv("MY_VER")); #endif return 0; }
  • getenv()用來取得參數name環境變量的內容。參數name爲環境變量的名稱,若是該變量存在則會返回指向該內容的指針。環境變量的格式爲name=value。
  • setenv()用來改變或增長環境變量的內容。參數name爲環境變量名稱字符串。
  • 運行結果:

environvar.c

#include <stdio.h> int main(void) { extern char **environ; int i; for(i = 0; environ[i] != NULL; i++) printf("%s\n", environ[i]); return 0; }
  • 簡單打印環境變量表
  • 指針變量environ,它指向的是包含全部的環境變量的一個列表。
  • 運行結果:

consumer.c

#include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <limits.h> #include <sys/types.h> #include <sys/stat.h> #define FIFO_NAME "/tmp/myfifo" #define BUFFER_SIZE PIPE_BUF int main() { int pipe_fd; int res; int open_mode = O_RDONLY; char buffer[BUFFER_SIZE + 1]; int bytes = 0; memset(buffer, 0, sizeof(buffer)); printf("Process %d opeining FIFO O_RDONLY \n", getpid()); pipe_fd = open(FIFO_NAME, open_mode); printf("Process %d result %d\n", getpid(), pipe_fd); if (pipe_fd != -1) { do { res = read(pipe_fd, buffer, BUFFER_SIZE); bytes += res; } while (res > 0); close(pipe_fd); } else { exit(EXIT_FAILURE); } printf("Process %d finished, %d bytes read\n", getpid(), bytes); exit(EXIT_SUCCESS); }
  • memset:做用是在一段內存塊中填充某個給定的值,它是對較大的結構體或數組進行清零操做的一種最快方法。
    • void memset(void s, int ch, size_t n);
    • 函數解釋:將s中前n個字節替換爲ch並返回s;
  • 運行結果:

listargs.c

#include <stdio.h> main( int ac, char *av[] ) { int i; printf("Number of args: %d, Args are:\n", ac); for(i=0;i<ac;i++) printf("args[%d] %s\n", i, av[i]); fprintf(stderr,"This message is sent to stderr.\n"); }
  • 運行結果:

pipedemo.c

  • 輸入一個數據,將返回一個如出一轍的數據。
  • 運行結果

whotofile.c

  • 將who命令輸出的結果輸入userlist文件中。
  • 運行結果:

    sigdemo1.c

  • 一次打印5個hello
  • 運行結果:

sigdemo2.c

  • 一直輸出hello
  • 經過ctrl+z強制中止
  • 運行結果:

sigdemo3.c

  • 輸入什麼打印什麼
  • 運行結果:

相關文章
相關標籤/搜索
本站公眾號
   歡迎關注本站公眾號,獲取更多信息