一、列表生成式、迭代器、生成器算法
有一個列表[0,1,2,3,4,5,6,7,8,9],列表中每一個元素加1函數
a = [0,1,2,3,4,5,6,7,8,9] for index,i in enumerate(a): a[index] +=1 print(a) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
列表生成式寫法spa
>>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
生成器code
經過列表生成式,咱們能夠直接建立一個列表。可是,受到內存限制,列表容量確定是有限的。並且,建立一個包含100萬個元素的列表,不只佔用很大的存儲空間,若是咱們僅僅須要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。對象
因此,若是列表元素能夠按照某種算法推算出來,那咱們是否能夠在循環的過程當中不斷推算出後續的元素呢?這樣就沒必要建立完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱爲生成器:generator。blog
要建立一個generator,有不少種方法。第一種方法很簡單,只要把一個列表生成式的[]
改爲()
,就建立了一個generator:內存
>>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630>
建立L
和g
的區別僅在於最外層的[]
和()
,L
是一個list,而g
是一個generator。咱們能夠直接打印出list的每個元素,generator只能一個一個打印出來,能夠經過next()
函數得到generator的下一個返回值。ci
>>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
generator保存的是算法,每次調用next(g)
,就計算出g
的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration
的錯誤。 generator
>>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81
generator很是強大。若是推算的算法比較複雜,用相似列表生成式的for
循環沒法實現的時候,還能夠用函數來實現。it
好比,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數均可由前兩個數相加獲得:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契數列用列表生成式寫不出來,可是,用函數把它打印出來卻很容易:
def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done'
上面的函數能夠輸出斐波那契數列的前N個數:
>>> fib(10) 1 1 2 3 5 8 13 21 34 55 done
仔細觀察,能夠看出,fib
函數其實是定義了斐波拉契數列的推算規則,能夠從第一個元素開始,推算出後續任意的元素,這種邏輯其實很是相似generator。
要把fib
函數變成generator,只須要把print(b)
改成yield b
就能夠了:
def fib(max): n,a,b = 0,0,1 while n < max: #print(b) yield b a,b = b,a+b n += 1 return 'done'
這就是定義generator的另外一種方法。若是一個函數定義中包含yield
關鍵字,那麼這個函數就再也不是一個普通函數,而是一個generator:
>>> f = fib(6) >>> f <generator object fib at 0x104feaaa0>
generator和函數的執行流程不同。函數是順序執行,遇到return
語句或者最後一行函數語句就返回。而變成generator的函數,在每次調用next()
的時候執行,遇到yield
語句返回,再次執行時從上次返回的yield
語句處繼續執行。
data = fib(10) print(data) print(data.__next__()) print(data.__next__()) print("helloworld") print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) print(data.__next__()) #輸出 <generator object fib at 0x101be02b0> 1 helloworld 3 8
在上面fib
的例子,在循環過程當中不斷調用yield
,就會不斷中斷。固然要給循環設置一個條件來退出循環,否則就會產生一個無限數列出來。
一樣的,把函數改爲generator後,基本上歷來不會用next()
來獲取下一個返回值,而是直接使用for
循環來迭代:
>>> for n in fib(6): ... print(n) ... 1 3 8
迭代器
咱們已經知道,能夠直接做用於for
循環的數據類型有如下幾種:
一類是集合數據類型,如list
、tuple
、dict
、set
、str
等;
一類是generator
,包括生成器和帶yield
的generator function。
這些能夠直接做用於for
循環的對象統稱爲可迭代對象:Iterable
。
可使用isinstance()
判斷一個對象是不是Iterable
對象:
>>> from collections import Iterable >>> isinstance([], Iterable) True >>> isinstance({}, Iterable) True >>> isinstance('abc', Iterable) True >>> isinstance((x for x in range(10)), Iterable) True >>> isinstance(100, Iterable) False
而生成器不但能夠做用於for
循環,還能夠被next()
函數不斷調用並返回下一個值,直到最後拋出StopIteration
錯誤表示沒法繼續返回下一個值了。
*能夠被next()
函數調用並不斷返回下一個值的對象稱爲迭代器:Iterator
。
可使用isinstance()
判斷一個對象是不是Iterator
對象:
>>> from collections import Iterator >>> isinstance((x for x in range(10)), Iterator) True >>> isinstance([], Iterator) False >>> isinstance({}, Iterator) False >>> isinstance('abc', Iterator) False
生成器都是Iterator
對象,但list
、dict
、str
雖然是Iterable
,卻不是Iterator
。
把list
、dict
、str
等Iterable
變成Iterator
可使用iter()
函數:
>>> isinstance(iter([]), Iterator) True >>> isinstance(iter('abc'), Iterator) True
Python的Iterator
對象表示的是一個數據流,Iterator對象能夠被next()
函數調用並不斷返回下一個數據,直到沒有數據時拋出StopIteration
錯誤。能夠把這個數據流看作是一個有序序列,但卻不能提早知道序列的長度,只能不斷經過next()
函數實現按需計算下一個數據,因此Iterator
的計算是惰性的,只有在須要返回下一個數據時它纔會計算。
Iterator
甚至能夠表示一個無限大的數據流,例如全體天然數。而使用list是永遠不可能存儲全體天然數的。
小結
凡是可做用於for
循環的對象都是Iterable
類型;
凡是可做用於next()
函數的對象都是Iterator
類型,它們表示一個惰性計算的序列;
集合數據類型如list
、dict
、str
等是Iterable
但不是Iterator
,不過能夠經過iter()
函數得到一個Iterator
對象。
Python的for
循環本質上就是經過不斷調用next()
函數實現的。