python學習之路5

一、列表生成式、迭代器、生成器算法

  有一個列表[0,1,2,3,4,5,6,7,8,9],列表中每一個元素加1函數

a = [0,1,2,3,4,5,6,7,8,9]

for index,i in enumerate(a):
    a[index] +=1
print(a)



[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

  列表生成式寫法spa

>>> a = [i+1 for i in range(10)]
>>> a
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 

  生成器code

    經過列表生成式,咱們能夠直接建立一個列表。可是,受到內存限制,列表容量確定是有限的。並且,建立一個包含100萬個元素的列表,不只佔用很大的存儲空間,若是咱們僅僅須要訪問前面幾個元素,那後面絕大多數元素佔用的空間都白白浪費了。對象

  因此,若是列表元素能夠按照某種算法推算出來,那咱們是否能夠在循環的過程當中不斷推算出後續的元素呢?這樣就沒必要建立完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱爲生成器:generator。blog

    要建立一個generator,有不少種方法。第一種方法很簡單,只要把一個列表生成式的[]改爲(),就建立了一個generator:內存

 

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

  

  建立Lg的區別僅在於最外層的[]()L是一個list,而g是一個generator。咱們能夠直接打印出list的每個元素,generator只能一個一個打印出來,能夠經過next()函數得到generator的下一個返回值。ci

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

 

  generator保存的是算法,每次調用next(g),就計算出g的下一個元素的值,直到計算到最後一個元素,沒有更多的元素時,拋出StopIteration的錯誤。 generator

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
...
0
1
4
9
16
25
36
49
64
81

 

generator很是強大。若是推算的算法比較複雜,用相似列表生成式的for循環沒法實現的時候,還能夠用函數來實現。it

好比,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數均可由前兩個數相加獲得:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契數列用列表生成式寫不出來,可是,用函數把它打印出來卻很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

 

上面的函數能夠輸出斐波那契數列的前N個數:

>>> fib(10)
1
1
2
3
5
8
13
21
34
55
done

仔細觀察,能夠看出,fib函數其實是定義了斐波拉契數列的推算規則,能夠從第一個元素開始,推算出後續任意的元素,這種邏輯其實很是相似generator。

要把fib函數變成generator,只須要把print(b)改成yield b就能夠了:

def fib(max):
    n,a,b = 0,0,1

    while n < max:
        #print(b)
        yield  b
        a,b = b,a+b

        n += 1

     return 'done'

這就是定義generator的另外一種方法。若是一個函數定義中包含yield關鍵字,那麼這個函數就再也不是一個普通函數,而是一個generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

generator和函數的執行流程不同。函數是順序執行,遇到return語句或者最後一行函數語句就返回。而變成generator的函數,在每次調用next()的時候執行,遇到yield語句返回,再次執行時從上次返回的yield語句處繼續執行。

data = fib(10)
print(data)

print(data.__next__())
print(data.__next__())
print("helloworld")
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())
print(data.__next__())

#輸出
<generator object fib at 0x101be02b0>
1
helloworld
3
8

在上面fib的例子,在循環過程當中不斷調用yield,就會不斷中斷。固然要給循環設置一個條件來退出循環,否則就會產生一個無限數列出來。

一樣的,把函數改爲generator後,基本上歷來不會用next()來獲取下一個返回值,而是直接使用for循環來迭代:

>>> for n in fib(6):
...     print(n)
...
1
3
8

 

 

迭代器

咱們已經知道,能夠直接做用於for循環的數據類型有如下幾種:

一類是集合數據類型,如listtupledictsetstr等;

一類是generator,包括生成器和帶yield的generator function。

這些能夠直接做用於for循環的對象統稱爲可迭代對象:Iterable

可使用isinstance()判斷一個對象是不是Iterable對象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但能夠做用於for循環,還能夠被next()函數不斷調用並返回下一個值,直到最後拋出StopIteration錯誤表示沒法繼續返回下一個值了。

*能夠被next()函數調用並不斷返回下一個值的對象稱爲迭代器:Iterator

可使用isinstance()判斷一個對象是不是Iterator對象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator對象,但listdictstr雖然是Iterable,卻不是Iterator

listdictstrIterable變成Iterator可使用iter()函數:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

Python的Iterator對象表示的是一個數據流,Iterator對象能夠被next()函數調用並不斷返回下一個數據,直到沒有數據時拋出StopIteration錯誤。能夠把這個數據流看作是一個有序序列,但卻不能提早知道序列的長度,只能不斷經過next()函數實現按需計算下一個數據,因此Iterator的計算是惰性的,只有在須要返回下一個數據時它纔會計算。

Iterator甚至能夠表示一個無限大的數據流,例如全體天然數。而使用list是永遠不可能存儲全體天然數的。

 

小結

凡是可做用於for循環的對象都是Iterable類型;

凡是可做用於next()函數的對象都是Iterator類型,它們表示一個惰性計算的序列;

集合數據類型如listdictstr等是Iterable但不是Iterator,不過能夠經過iter()函數得到一個Iterator對象。

Python的for循環本質上就是經過不斷調用next()函數實現的。

相關文章
相關標籤/搜索