看起來挺妙實際很暴力的一題
已知每一個選手的分數都是平面上的直線
題目實際就是讓咱們求每條直線在整點處最大是第幾大
咱們考慮先對全部的直線進行半平面交(由於\(a_i\)都是正整數,因此比普通的還簡單),咱們珂以求出哪幾個選手最高能拿到rak1
咱們再考慮哪幾個選手最高珂以拿到rak2
對剩下的人所表示的線段進行半平面交,咱們珂以二分查找出以前已經刪除的線段每一個線段在哪一個區間比如今的半平面邊界高,打上標記(差分),進行排序,而後掃描線一遍,看到底有哪幾我的上面的標記是1的,將這些人的答案標成2
以此類推,咱們作m次半平面交,就能求出咱們所需答案,時間複雜度\(O(mn\log n)\)
#include <bits/stdc++.h>
#define ll long long
#define N 100005
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline ll read()
{
register ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
struct num{
ll a,b,c;
num(){a=b=0,c=1;}
num(register ll x,register ll y)
{
if(y<0)
x=-x,y=-y;
a=x/y;
b=x%y;
c=y;
if(b<0)
b+=c,--a;
}
inline ll floor(){return a;}
inline ll ceil(){return a+(b>0);}
inline bool operator<(const num &x)const{return a==x.a?b*x.c<x.b*c:a<x.a;}
inline bool operator<=(const num &x)const{return a==x.a?b*x.c<=x.b*c:a<x.a;}
}p[N];
int n,m,id[N],s[N],top,tot,ans[N];
ll a[N],b[N];
pair<ll,int> S[N<<1];
inline num cross(register int x,register int y)
{
return num(b[y]-b[x],a[x]-a[y]);
}
inline void work(register int k)
{
p[top=tot=0]=num(0,1);
for(register int i=1;i<=n;++i)
if(ans[id[i]]==-1&&a[id[i]]>a[s[top]])
{
while(top&&cross(id[i],s[top]).floor()<p[top].ceil())
--top;
s[++top]=id[i];
if(top>1)
p[top]=cross(s[top-1],id[i]);
}
p[top+1]=num(1ll<<60,1);
for(register int i=1;i<=n;++i)
if(ans[i]>0)
{
int l=1,r=top-1,res=top;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]>=a[i]||cross(s[mid],i)<=p[mid+1])
res=mid,r=mid-1;
else
l=mid+1;
}
S[++tot]=make_pair(a[s[res]]>=a[i]?0ll:cross(s[res],i).floor()+1,1);
l=2,r=top,res=1;
while(l<=r)
{
int mid=l+r>>1;
if(a[s[mid]]<=a[i]||p[mid]<=cross(s[mid],i))
res=mid,l=mid+1;
else
r=mid-1;
}
if(a[s[res]]>a[i])
S[++tot]=make_pair(cross(s[res],i).ceil(),-1);
}
sort(S+1,S+1+tot);
for(register int i=1,j=1,x=0;i<=top;++i)
{
while(j<=tot&&S[j].first<=p[i].ceil())
x+=S[j++].second;
if(x<k)
ans[s[i]]=k;
while(j<=tot&&S[j].first<=p[i+1].floor())
{
int l=j;
while(l<=tot&&S[l].first==S[j].first)
x+=S[l++].second;
if(x<k)
ans[s[i]]=k;
j=l;
}
}
}
inline bool cmp(register int x,register int y)
{
return a[x]<a[y]||a[x]==a[y]&&b[x]>b[y];
}
int main()
{
n=read(),m=read();
for(register int i=1;i<=n;++i)
a[i]=read(),b[i]=read(),id[i]=i,ans[i]=-1;
sort(id+1,id+1+n,cmp);
for(register int i=1;i<=m;++i)
work(i);
for(register int i=1;i<=n;++i)
write(ans[i]),putchar(' ');
return 0;
}