不會啊。node
T1ios
找規律: 展轉相減,加速。ide
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include<cmath> using namespace std; long long a,b,c,ans=2; int main() { freopen("seq.in","r",stdin); freopen("seq.out","w",stdout); scanf("%lld%lld",&a,&b); if(abs(a-b)==1) { cout<<(a+1); return 0; } if(a<b) { c=a; a=b; b=c; } while(a&&b) { if(b<a-b) b=a-b; c=a-b; if(c<b) {a=b;b=c;} else if(c>b) {a=c;} else if(b==c) {a=c;ans--;} ans++; if(b==1) { cout<<ans+a-1<<endl; return 0; } } cout<<ans<<endl; return 0; }
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include<cmath> using namespace std; long long a,b,c,ans; int main() { freopen("seq.in","r",stdin); freopen("seq.out","w",stdout); scanf("%lld%lld",&a,&b); if(a<b) { c=a; a=b; b=c; } c=a%b; while(c) { ans+=a/b; a=b;b=c;c=a%b; } ans+=a/b; ans++; cout<<ans<<endl; return 0; }
T2spa
好寫的一種方法,直接建一棵最大生成樹。code
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include<cmath> #include<ctime> using namespace std; const int N=100009; struct node{ int x,y,z; }a[N*2]; int f[N],size[N],last[N]; int n,m; long long ans[N]; bool cmp(node v,node u) { return v.z>u.z;} int find(int x) { while(x!=f[x]) x=f[x]=f[f[x]]; return x; } int main() { freopen("car.in","r",stdin); freopen("car.out","w",stdout); scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z); sort(a+1,a+1+m,cmp); for(int i=1;i<=n;i++) f[i]=i,size[i]=1,last[i]=1; int f1,f2,i=2; f1=find(a[1].x);f2=find(a[1].y); if(f1!=f2) f[f1]=f2,size[f2]+=size[f1]; while(i<=m+1) { while(a[i].z==a[i-1].z) { f1=find(a[i].x); f2=find(a[i].y); if(f1!=f2) f[f1]=f2,size[f2]+=size[f1]; i++; } for(int j=1;j<=n;j++) { ans[j]+=(1LL*size[find(j)]-1LL*last[j])*(1LL*size[find(j)]-1LL*last[j]); last[j]=size[f[j]]; } f1=find(a[i].x);f2=find(a[i].y); if(f1!=f2) f[f1]=f2,size[f2]+=size[f1]; i++; } for(int i=1;i<=n;i++) printf("%lld ",ans[i]); cout<<'\n'<<clock(); return 0; }
我本身測得50%的數據試過的,跑的賊快。不知道哪錯了。blog
反正個人作法是O(nm)的不是正解。string
正解是見一棵最大生成樹, it
T3io
部分分dpevent
很難noi思惟難度