Redis實現分佈式鎖-jedisLock—redis分佈式鎖實現

1、使用分佈式鎖要知足的幾個條件:html

  1. 系統是一個分佈式系統(關鍵是分佈式,單機的可使用ReentrantLock或者synchronized代碼塊來實現)
  2. 共享資源(各個系統訪問同一個資源,資源的載體多是傳統關係型數據庫或者NoSQL)
  3. 同步訪問(即有不少個進程同事訪問同一個共享資源。沒有同步訪問,誰管你資源競爭不競爭)

2、應用的場景例子java

  管理後臺的部署架構(多臺tomcat服務器+redis【多臺tomcat服務器訪問一臺redis】+mysql【多臺tomcat服務器訪問一臺服務器上的mysql】)就知足使用分佈式鎖的條件。多臺服務器要訪問redis全局緩存的資源,若是不使用分佈式鎖就會出現問題。 看以下僞代碼:mysql

複製代碼

long N=0L;
//N從redis獲取值
if(N<5){
N++;
//N寫回redis
}

複製代碼

上面的代碼主要實現的功能:redis

  從redis獲取值N,對數值N進行邊界檢查,自加1,而後N寫回redis中。 這種應用場景很常見,像秒殺,全局遞增ID、IP訪問限制等。以IP訪問限制來講,惡意攻擊者可能發起無限次訪問,併發量比較大,分佈式環境下對N的邊界檢查就不可靠,由於從redis讀的N可能已是髒數據。傳統的加鎖的作法(如java的synchronized和Lock)也沒用,由於這是分佈式環境,這個同步問題的救火隊員也一籌莫展。在這危急存亡之秋,分佈式鎖終於有用武之地了。算法

  分佈式鎖能夠基於不少種方式實現,好比zookeeper、redis...。無論哪一種方式,他的基本原理是不變的:用一個狀態值表示鎖,對鎖的佔用和釋放經過狀態值來標識。spring

   這裏主要講如何用redis實現分佈式鎖。sql

3、使用redis的setNX命令實現分佈式鎖  數據庫

一、實現的原理緩存

  Redis爲單進程單線程模式,採用隊列模式將併發訪問變成串行訪問,且多客戶端對Redis的鏈接並不存在競爭關係。redis的SETNX命令能夠方便的實現分佈式鎖。tomcat

二、基本命令解析

1)setNX(SET if Not eXists)

語法:

SETNX key value

將 key 的值設爲 value ,當且僅當 key 不存在。

若給定的 key 已經存在,則 SETNX 不作任何動做。

SETNX 是『SET if Not eXists』(若是不存在,則 SET)的簡寫

返回值:

  設置成功,返回 1 。

  設置失敗,返回 0 。

 例子:

複製代碼

redis> EXISTS job                # job 不存在
(integer) 0

redis> SETNX job "programmer"    # job 設置成功
(integer) 1

redis> SETNX job "code-farmer"   # 嘗試覆蓋 job ,失敗
(integer) 0

redis> GET job                   # 沒有被覆蓋
"programmer"

複製代碼

 因此咱們使用執行下面的命令

SETNX lock.foo <current Unix time + lock timeout + 1>
  • 如返回1,則該客戶端得到鎖,把lock.foo的鍵值設置爲時間值表示該鍵已被鎖定,該客戶端最後能夠經過DEL lock.foo來釋放該鎖。

  • 如返回0,代表該鎖已被其餘客戶端取得,這時咱們能夠先返回或進行重試等對方完成或等待鎖超時。

2)getSET

語法:

GETSET key value

  將給定 key 的值設爲 value ,並返回 key 的舊值(old value)。

  當 key 存在但不是字符串類型時,返回一個錯誤。

返回值:

  返回給定 key 的舊值。

  當 key 沒有舊值時,也便是, key 不存在時,返回 nil 。

3)get

語法:

GET key

 返回值:

  當 key 不存在時,返回 nil ,不然,返回 key 的值。

  若是 key 不是字符串類型,那麼返回一個錯誤

4、解決死鎖

  上面的鎖定邏輯有一個問題:若是一個持有鎖的客戶端失敗或崩潰了不能釋放鎖,該怎麼解決

咱們能夠經過鎖的鍵對應的時間戳來判斷這種狀況是否發生了,若是當前的時間已經大於lock.foo的值,說明該鎖已失效,能夠被從新使用。

  發生這種狀況時,可不能簡單的經過DEL來刪除鎖,而後再SETNX一次(講道理,刪除鎖的操做應該是鎖擁有這執行的,這裏只須要等它超時便可),當多個客戶端檢測到鎖超時後都會嘗試去釋放它,這裏就可能出現一個競態條件,讓咱們模擬一下這個場景: 

複製代碼

C0操做超時了,但它還持有着鎖,C1和C2讀取lock.foo檢查時間戳,前後發現超時了。 
C1 發送DEL lock.foo 
C1 發送SETNX lock.foo 而且成功了。 
C2 發送DEL lock.foo 
C2 發送SETNX lock.foo 而且成功了。 
這樣一來,C1,C2都拿到了鎖!問題大了!

複製代碼

  幸虧這種問題是能夠避免的,讓咱們來看看C3這個客戶端是怎樣作的: 

複製代碼

C3發送SETNX lock.foo 想要得到鎖,因爲C0還持有鎖,因此Redis返回給C3一個0 
C3發送GET lock.foo 以檢查鎖是否超時了,若是沒超時,則等待或重試。 
反之,若是已超時,C3經過下面的操做來嘗試得到鎖: 
GETSET lock.foo <current Unix time + lock timeout + 1> 
經過GETSET,C3拿到的時間戳若是仍然是超時的,那就說明,C3如願以償拿到鎖了。 
若是在C3以前,有個叫C4的客戶端比C3快一步執行了上面的操做,那麼C3拿到的時間戳是個未超時的值,這時,C3沒有如期得到鎖,須要再次等待或重試。留意一下,儘管C3沒拿到鎖,但它改寫了C4設置的鎖的超時值,不過這一點很是微小的偏差帶來的影響能夠忽略不計。

複製代碼

  注意:爲了讓分佈式鎖的算法更穩鍵些,持有鎖的客戶端在解鎖以前應該再檢查一次本身的鎖是否已經超時,再去作DEL操做,由於可能客戶端由於某個耗時的操做而掛起,操做完的時候鎖由於超時已經被別人得到,這時就沒必要解鎖了。  

5、代碼實現

  expireMsecs 鎖持有超時,防止線程在入鎖之後,無限的執行下去,讓鎖沒法釋放 
  timeoutMsecs 鎖等待超時,防止線程飢餓,永遠沒有入鎖執行代碼的機會 

注意:項目裏面須要先搭建好redis的相關配置

複製代碼

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.dao.DataAccessException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;

/**
 * Redis distributed lock implementation.
 *
 * @author zhengcanrui
 */
public class RedisLock {

    private static Logger logger = LoggerFactory.getLogger(RedisLock.class);

    private RedisTemplate redisTemplate;

    private static final int DEFAULT_ACQUIRY_RESOLUTION_MILLIS = 100;

    /**
     * Lock key path.
     */
    private String lockKey;

    /**
     * 鎖超時時間,防止線程在入鎖之後,無限的執行等待
     */
    private int expireMsecs = 60 * 1000;

    /**
     * 鎖等待時間,防止線程飢餓
     */
    private int timeoutMsecs = 10 * 1000;

    private volatile boolean locked = false;

    /**
     * Detailed constructor with default acquire timeout 10000 msecs and lock expiration of 60000 msecs.
     *
     * @param lockKey lock key (ex. account:1, ...)
     */
    public RedisLock(RedisTemplate redisTemplate, String lockKey) {
        this.redisTemplate = redisTemplate;
        this.lockKey = lockKey + "_lock";
    }

    /**
     * Detailed constructor with default lock expiration of 60000 msecs.
     *
     */
    public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs) {
        this(redisTemplate, lockKey);
        this.timeoutMsecs = timeoutMsecs;
    }

    /**
     * Detailed constructor.
     *
     */
    public RedisLock(RedisTemplate redisTemplate, String lockKey, int timeoutMsecs, int expireMsecs) {
        this(redisTemplate, lockKey, timeoutMsecs);
        this.expireMsecs = expireMsecs;
    }

    /**
     * @return lock key
     */
    public String getLockKey() {
        return lockKey;
    }

    private String get(final String key) {
        Object obj = null;
        try {
            obj = redisTemplate.execute(new RedisCallback<Object>() {
                @Override
                public Object doInRedis(RedisConnection connection) throws DataAccessException {
                    StringRedisSerializer serializer = new StringRedisSerializer();
                    byte[] data = connection.get(serializer.serialize(key));
                    connection.close();
                    if (data == null) {
                        return null;
                    }
                    return serializer.deserialize(data);
                }
            });
        } catch (Exception e) {
            logger.error("get redis error, key : {}", key);
        }
        return obj != null ? obj.toString() : null;
    }

    private boolean setNX(final String key, final String value) {
        Object obj = null;
        try {
            obj = redisTemplate.execute(new RedisCallback<Object>() {
                @Override
                public Object doInRedis(RedisConnection connection) throws DataAccessException {
                    StringRedisSerializer serializer = new StringRedisSerializer();
                    Boolean success = connection.setNX(serializer.serialize(key), serializer.serialize(value));
                    connection.close();
                    return success;
                }
            });
        } catch (Exception e) {
            logger.error("setNX redis error, key : {}", key);
        }
        return obj != null ? (Boolean) obj : false;
    }

    private String getSet(final String key, final String value) {
        Object obj = null;
        try {
            obj = redisTemplate.execute(new RedisCallback<Object>() {
                @Override
                public Object doInRedis(RedisConnection connection) throws DataAccessException {
                    StringRedisSerializer serializer = new StringRedisSerializer();
                    byte[] ret = connection.getSet(serializer.serialize(key), serializer.serialize(value));
                    connection.close();
                    return serializer.deserialize(ret);
                }
            });
        } catch (Exception e) {
            logger.error("setNX redis error, key : {}", key);
        }
        return obj != null ? (String) obj : null;
    }

    /**
     * 得到 lock.
     * 實現思路: 主要是使用了redis 的setnx命令,緩存了鎖.
     * reids緩存的key是鎖的key,全部的共享, value是鎖的到期時間(注意:這裏把過時時間放在value了,沒有時間上設置其超時時間)
     * 執行過程:
     * 1.經過setnx嘗試設置某個key的值,成功(當前沒有這個鎖)則返回,成功得到鎖
     * 2.鎖已經存在則獲取鎖的到期時間,和當前時間比較,超時的話,則設置新的值
     *
     * @return true if lock is acquired, false acquire timeouted
     * @throws InterruptedException in case of thread interruption
     */
    public synchronized boolean lock() throws InterruptedException {
        int timeout = timeoutMsecs;
        while (timeout >= 0) {
            long expires = System.currentTimeMillis() + expireMsecs + 1;
            String expiresStr = String.valueOf(expires); //鎖到期時間
            if (this.setNX(lockKey, expiresStr)) {
                // lock acquired
                locked = true;
                return true;
            }

            String currentValueStr = this.get(lockKey); //redis裏的時間
            if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {
                //判斷是否爲空,不爲空的狀況下,若是被其餘線程設置了值,則第二個條件判斷是過不去的
                // lock is expired

                String oldValueStr = this.getSet(lockKey, expiresStr);
                //獲取上一個鎖到期時間,並設置如今的鎖到期時間,
                //只有一個線程才能獲取上一個線上的設置時間,由於jedis.getSet是同步的
                if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
                    //防止誤刪(覆蓋,由於key是相同的)了他人的鎖——這裏達不到效果,這裏值會被覆蓋,可是由於什麼相差了不多的時間,因此能夠接受

                    //[分佈式的狀況下]:如過這個時候,多個線程剛好都到了這裏,可是隻有一個線程的設置值和當前值相同,他纔有權利獲取鎖
                    // lock acquired
                    locked = true;
                    return true;
                }
            }
            timeout -= DEFAULT_ACQUIRY_RESOLUTION_MILLIS;

            /*
                延遲100 毫秒,  這裏使用隨機時間可能會好一點,能夠防止飢餓進程的出現,即,當同時到達多個進程,
                只會有一個進程得到鎖,其餘的都用一樣的頻率進行嘗試,後面有來了一些進行,也以一樣的頻率申請鎖,這將可能致使前面來的鎖得不到知足.
                使用隨機的等待時間能夠必定程度上保證公平性
             */
            Thread.sleep(DEFAULT_ACQUIRY_RESOLUTION_MILLIS);

        }
        return false;
    }


    /**
     * Acqurired lock release.
     */
    public synchronized void unlock() {
        if (locked) {
            redisTemplate.delete(lockKey);
            locked = false;
        }
    }

}

複製代碼

 調用:

複製代碼

RedisLock lock = new RedisLock(redisTemplate, key, 10000, 20000);
 try {
            if(lock.lock()) {
                   //須要加鎖的代碼
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }finally {
            //爲了讓分佈式鎖的算法更穩鍵些,持有鎖的客戶端在解鎖以前應該再檢查一次本身的鎖是否已經超時,再去作DEL操做,由於可能客戶端由於某個耗時的操做而掛起,
            //操做完的時候鎖由於超時已經被別人得到,這時就沒必要解鎖了。 ————這裏沒有作
            lock.unlock();
        }

複製代碼

6、一些問題

一、爲何不直接使用expire設置超時時間,而將時間的毫秒數其做爲value放在redis中?

以下面的方式,把超時的交給redis處理:

lock(key, expireSec){
isSuccess = setnx key
if (isSuccess)
expire key expireSec
}

  這種方式貌似沒什麼問題,可是假如在setnx後,redis崩潰了,expire就沒有執行,結果就是死鎖了。鎖永遠不會超時。

 二、爲何前面的鎖已經超時了,還要用getSet去設置新的時間戳的時間獲取舊的值,而後和外面的判斷超時時間的時間戳比較呢?

  由於是分佈式的環境下,能夠在前一個鎖失效的時候,有兩個進程進入到鎖超時的判斷。如:

C0超時了,還持有鎖,C1/C2同時請求進入了方法裏面

C1/C2獲取到了C0的超時時間

C1使用getSet方法

C2也執行了getSet方法

假如咱們不加 oldValueStr.equals(currentValueStr) 的判斷,將會C1/C2都將得到鎖,加了以後,能保證C1和C2只能一個能得到鎖,一個只能繼續等待。

注意:這裏可能致使超時時間不是其本來的超時時間,C1的超時時間可能被C2覆蓋了,可是他們相差的毫秒及其小,這裏忽略了。

 

致謝:感謝您的閱讀!轉載請加原文連接,謝謝。轉載請加上原文連接,謝謝!http://www.cnblogs.com/0201zcr/p/5942748.html

相關文章
相關標籤/搜索