class ExpressionProcess(object): ''' load data and calc it by different method ''' def __init__(self,main_ins,host_obj,expression_obj,specified_item=None): ''' :param main_ins: DataHandler 實例 :param host_obj: 具體的host obj :param expression_obj: :return: 計算單條表達式的結果 ''' self.host_obj = host_obj self.expression_obj = expression_obj self.main_ins = main_ins self.service_redis_key = "StatusData_%s_%s_latest" %(host_obj.id,expression_obj.service.name) #拼出此服務在redis中存儲的對應key self.time_range = self.expression_obj.data_calc_args.split(',')[0] #獲取要從redis中取多長時間的數據,單位爲minute print("\033[31;1m------>%s\033[0m" % self.service_redis_key)
一、我取出6個數據(下面的+60是默認多取一分鐘數據,寧多勿少,多出來的後面會去掉)
二、approximate_data_range存的是大概的數據,要拿到精確的,我判斷一下
三、把數據集合交給不一樣的方法去處理了
四、根據監控間隔去取數據,若是監控間隔改變了怎嘛辦?python
def load_data_from_redis(self): '''load data from redis according to expression's configuration''' time_in_sec = int(self.time_range) * 60 #下面的+60是默認多取一分鐘數據,寧多勿少,多出來的後面會去掉 approximate_data_points = (time_in_sec + 60) / self.expression_obj.service.interval #獲取一個大概要取的值 #stop_loading_flag = False #循環去redis裏一個點一個點的取數據,直到變成True #while not stop_loading_flag: print("approximate dataset nums:", approximate_data_points,time_in_sec) data_range_raw = self.main_ins.redis.lrange(self.service_redis_key,-int(approximate_data_points),-1) #print("\033[31;1m------>%s\033[0m" % data_range) approximate_data_range = [json.loads(i.decode()) for i in data_range_raw] data_range = [] #精確的須要的數據 列表 for point in approximate_data_range: #print('bread point:', point) val,saving_time = point if time.time() - saving_time < time_in_sec :#表明數據有效 data_range.append(point) #print("service index key:",self.expression_obj.service_index.key) #print(point) '''if val: #確保數據存在 if 'data' not in val:#表明這個dict沒有sub_dict print("\033[44;1m%s\033[0m" %val[self.expression_obj.service_index.key]) #如何處理這些數據 呢? 是求avg(5), hit(5,3)....? 看來只能把數據集合交給不一樣的方法去處理了 #self.process(self.) #data_range.append( else: #像disk , nic這種有多個item的數據 for k,v in val['data'].items(): print("\033[45;1m%s, %s\033[0m" %(k,v)) print("\033[45;1m%s, %s\033[0m" %(k,v[self.expression_obj.service_index.key])) ''' #else: # print("data is invalid") print(data_range) return data_range
一、按照用戶的配置把數據 從redis裏取出來了, 好比 最近5分鐘,或10分鐘的數據redis
二、確保上面的條件 有正確的返回express
def process(self): """算出單條expression表達式的結果""" data_list = self.load_data_from_redis() #已經按照用戶的配置把數據 從redis裏取出來了, 好比 最近5分鐘,或10分鐘的數據 data_calc_func = getattr(self,'get_%s' % self.expression_obj.data_calc_func) #data_calc_func = self.get_avg... single_expression_calc_res = data_calc_func(data_list) #[True,43,None] print("---res of single_expression_calc_res ",single_expression_calc_res) if single_expression_calc_res: #確保上面的條件 有正確的返回 res_dic = { 'calc_res':single_expression_calc_res[0], 'calc_res_val':single_expression_calc_res[1], 'expression_obj':self.expression_obj, 'service_item':single_expression_calc_res[2], } print("\033[41;1msingle_expression_calc_res:%s\033[0m" % single_expression_calc_res) return res_dic else: return False
一、監控了特定的指標,好比有多個網卡,但這裏只特定監控eth0,就是監控這個特定指標,match上了json
二、在這裏判斷是否超越閾值app
多是因爲最近這個服務沒有數據彙報過來,取到的數據爲空,因此沒辦法 判斷閾值code
三、監控這個服務的全部項, 好比一臺機器的多個網卡, 任意一個超過了閾值,都算是問題的blog
def get_avg(self,data_set): ''' return average value of given data set :param data_set: :return: ''' clean_data_list = [] clean_data_dic = {} for point in data_set: val,save_time = point #print('---point:>', val) if val: if 'data' not in val:#沒有子dict clean_data_list.append(val[self.expression_obj.service_index.key]) else: #has sub dict for k,v in val['data'].items(): if k not in clean_data_dic: clean_data_dic[k]=[] clean_data_dic[k].append(v[self.expression_obj.service_index.key]) if clean_data_list: clean_data_list = [float(i) for i in clean_data_list] #avg_res = 0 if sum(clean_data_list) == 0 else sum(clean_data_list)/ len(clean_data_list) avg_res = sum(clean_data_list)/ len(clean_data_list) print("\033[46;1m----avg res:%s\033[0m" % avg_res) return [self.judge(avg_res), avg_res,None] #print('clean data list:', clean_data_list) elif clean_data_dic: for k,v in clean_data_dic.items(): clean_v_list = [float(i) for i in v] avg_res = 0 if sum(clean_v_list) == 0 else sum(clean_v_list) / len(clean_v_list) print("\033[46;1m-%s---avg res:%s\033[0m" % (k,avg_res)) if self.expression_obj.specified_index_key:#監控了特定的指標,好比有多個網卡,但這裏只特定監控eth0 if k == self.expression_obj.specified_index_key:#就是監控這個特定指標,match上了 #在這裏判斷是否超越閾值 print("test res [%s] [%s] [%s]=%s") %(avg_res, self.expression_obj.operator_type, self.expression_obj.threshold, self.judge(avg_res), ) calc_res = self.judge(avg_res) if calc_res: return [calc_res,avg_res,k] #後面的循環不用走了,反正 已經成立了一個了 else:#監控這個服務 的全部項, 好比一臺機器的多個網卡, 任意一個超過了閾值,都 算是有問題的 calc_res = self.judge(avg_res) if calc_res: return [calc_res,avg_res,k] print('specified monitor key:',self.expression_obj.specified_index_key) print('clean data dic:',k,len(clean_v_list), clean_v_list) else: #能走到這一步,表明 上面的循環判段都未成立 return [False,avg_res,k] else:#多是因爲最近這個服務 沒有數據 彙報 過來,取到的數據 爲空,因此沒辦法 判斷閾值 return [False,None,None]
def judge(self,calculated_val): ''' determine whether the index has reached the alert benchmark :param calculated_val: #已經算好的結果,多是avg(5) or .... :return: ''' #expression_args = self.expression_obj.data_calc_args.split(',') #hit_times = expression_args[1] if len(expression_args)>1 else None #if hit_times:#定義了超過閾值幾回的條件 calc_func = getattr(operator,self.expression_obj.operator_type) #calc_func = operator.eq.... return calc_func(calculated_val,self.expression_obj.threshold)
def get_hit(self,data_set): ''' return hit times value of given data set :param data_set: :return: ''' pass