不懂hive中的explain,說明hive還沒入門,學會explain,可以給咱們工做中使用hive帶來極大的便利!sql
本節將介紹 explain 的用法及參數介紹express
HIVE提供了EXPLAIN命令來展現一個查詢的執行計劃,這個執行計劃對於咱們瞭解底層原理,hive 調優,排查數據傾斜等頗有幫助apache
使用語法以下:ide
EXPLAIN [EXTENDED|CBO|AST|DEPENDENCY|AUTHORIZATION|LOCKS|VECTORIZATION|ANALYZE] query
explain 後面能夠跟如下可選參數,注意:這幾個可選參數不是 hive 每一個版本都支持的函數
在 hive cli 中輸入如下命令(hive 2.3.7):oop
explain select sum(id) from test1;
獲得結果(請逐行看完,即便看不懂也要每行都看):性能
STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-0 depends on stages: Stage-1
STAGE PLANS:
Stage: Stage-1
Map Reduce
Map Operator Tree:
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: id
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: sum(id)
mode: hash
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
sort order:
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
value expressions: _col0 (type: bigint)
Reduce Operator Tree:
Group By Operator
aggregations: sum(VALUE._col0)
mode: mergepartial
outputColumnNames: _col0
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
看完以上內容有什麼感覺,是否是感受都看不懂,不要着急,下面將會詳細講解每一個參數,相信你學完下面的內容以後再看 explain 的查詢結果將遊刃有餘。優化
一個HIVE查詢被轉換爲一個由一個或多個stage組成的序列(有向無環圖DAG)。這些stage能夠是MapReduce stage,也能夠是負責元數據存儲的stage,也能夠是負責文件系統的操做(好比移動和重命名)的stage。spa
咱們將上述結果拆分看,先從最外層開始,包含兩個大的部分:code
先看第一部分 stage dependencies ,包含兩個 stage,Stage-1 是根stage,說明這是開始的stage,Stage-0 依賴 Stage-1,Stage-1執行完成後執行Stage-0。
再看第二部分 stage plan,裏面有一個 Map Reduce,一個MR的執行計劃分爲兩個部分:
這兩個執行計劃樹裏面包含這條sql語句的 operator:
好,學到這裏再翻到上面 explain 的查詢結果,是否是感受基本都能看懂了。
本節介紹 explain 可以爲咱們在生產實踐中帶來哪些便利及解決咱們哪些迷惑
如今,咱們在hive cli 輸入如下查詢計劃語句
select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
問:上面這條 join 語句會過濾 id 爲 null 的值嗎
執行下面語句:
explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id;
咱們來看結果 (爲了適應頁面展現,僅截取了部分輸出信息):
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: id is not null (type: boolean)
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
...
從上述結果能夠看到 predicate: id is not null 這樣一行,說明 join 時會自動過濾掉關聯字段爲 null 值的狀況,但 left join 或 full join 是不會自動過濾的,你們能夠自行嘗試下。
看下面這條sql
select id,max(user_name) from test1 group by id;
問:group by 分組語句會進行排序嗎
直接來看 explain 以後結果 (爲了適應頁面展現,僅截取了部分輸出信息)
TableScan
alias: test1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: id, user_name
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Group By Operator
aggregations: max(user_name)
keys: id (type: int)
mode: hash
outputColumnNames: _col0, _col1
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
Reduce Output Operator
key expressions: _col0 (type: int)
sort order: +
Map-reduce partition columns: _col0 (type: int)
Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
value expressions: _col1 (type: string)
...
咱們看 Group By Operator,裏面有 keys: id (type: int) 說明按照 id 進行分組的,再往下看還有 sort order: + ,說明是按照 id 字段進行正序排序的。
觀察兩條sql語句
SELECT
a.id,
b.user_name
FROM
test1 a
JOIN test2 b ON a.id = b.id
WHERE
a.id > 2;
SELECT
a.id,
b.user_name
FROM
(SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;
這兩條sql語句輸出的結果是同樣的,可是哪條sql執行效率高呢
有人說第一條sql執行效率高,由於第二條sql有子查詢,子查詢會影響性能
有人說第二條sql執行效率高,由於先過濾以後,在進行join時的條數減小了,因此執行效率就高了
到底哪條sql效率高呢,咱們直接在sql語句前面加上 explain,看下執行計劃不就知道了嘛
在第一條sql語句前加上 explain,獲得以下結果
hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:a
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:a
TableScan
alias: a
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
在第二條sql語句前加上 explain,獲得以下結果
hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
Stage-4 is a root stage
Stage-3 depends on stages: Stage-4
Stage-0 depends on stages: Stage-3
STAGE PLANS:
Stage: Stage-4
Map Reduce Local Work
Alias -> Map Local Tables:
$hdt$_0:test1
Fetch Operator
limit: -1
Alias -> Map Local Operator Tree:
$hdt$_0:test1
TableScan
alias: test1
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int)
outputColumnNames: _col0
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
HashTable Sink Operator
keys:
0 _col0 (type: int)
1 _col0 (type: int)
Stage: Stage-3
Map Reduce
Map Operator Tree:
TableScan
alias: b
Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
Filter Operator
predicate: (id > 2) (type: boolean)
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: id (type: int), user_name (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
Map Join Operator
condition map:
Inner Join 0 to 1
keys:
0 _col0 (type: int)
1 _col0 (type: int)
outputColumnNames: _col0, _col2
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
Select Operator
expressions: _col0 (type: int), _col2 (type: string)
outputColumnNames: _col0, _col1
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
File Output Operator
compressed: false
Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
Local Work:
Map Reduce Local Work
Stage: Stage-0
Fetch Operator
limit: -1
Processor Tree:
ListSink
你們有什麼發現,除了表別名不同,其餘的執行計劃徹底同樣,都是先進行 where 條件過濾,在進行 join 條件關聯。說明 hive 底層會自動幫咱們進行優化,因此這兩條sql語句執行效率是同樣的。
以上僅列舉了3個咱們生產中既熟悉又有點迷糊的例子,explain 還有不少其餘的用途,如查看stage的依賴狀況、排查數據傾斜、hive 調優等,小夥伴們能夠自行嘗試。