JavaShuo
欄目
標籤
Few-shot Learning with Meta Metric Learners
時間 2021-01-03
欄目
HTML5
简体版
原文
原文鏈接
一、介紹 現有的基於元學習、度量學習的小樣本學習方法在處理diverse domains和various classes上存在侷限。元學習訓練一個meta learner預測具有相同結構,但針對不同任務網絡的權重。度量學習針對不同任務學習一個不隨任務改變,適應所有任務的度量。當任務間差異較大時,度量學習將會失敗,學不到這樣的度量。作者提出了一個元度量學習的方法,利用度量學習的匹配網絡作爲base
>>阅读原文<<
相關文章
1.
論文閱讀筆記《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
【2017_ICCV】Deep Metric Learning with Angular Loss
4.
Large-scale Distance Metric Learning with Uncertainty
5.
[Machine Learning]--Improving classification with the AdaBoost meta-algorithm
6.
Learning a Similarity Metric Discriminatively, with Application to Face Verification.
7.
What’s New in Deep Learning Research: Understanding Meta-Learning
8.
Learning a Similarity Metric Discriminatively, with Application to Face Verification
9.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
10.
The Rise of Meta Learning
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
ASP ServerVariables 集合
-
ASP 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
Meta-learning
learners
metric
meta
learning
with+this
with...connect
Deep Learning
with...as
by...with
HTML5
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi來襲
2.
機器學習-補充03 神經網絡之**函數(Activation Function)
3.
git上開源maven項目部署 多module maven項目(多module maven+redis+tomcat+mysql)後臺部署流程學習記錄
4.
ecliple-tomcat部署maven項目方式之一
5.
eclipse新導入的項目經常可以看到「XX cannot be resolved to a type」的報錯信息
6.
Spark RDD的依賴於DAG的工作原理
7.
VMware安裝CentOS-8教程詳解
8.
YDOOK:Java 項目 Spring 項目導入基本四大 jar 包 導入依賴,怎樣在 IDEA 的項目結構中導入 jar 包 導入依賴
9.
簡單方法使得putty(windows10上)可以免密登錄樹莓派
10.
idea怎麼用本地maven
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文閱讀筆記《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
【2017_ICCV】Deep Metric Learning with Angular Loss
4.
Large-scale Distance Metric Learning with Uncertainty
5.
[Machine Learning]--Improving classification with the AdaBoost meta-algorithm
6.
Learning a Similarity Metric Discriminatively, with Application to Face Verification.
7.
What’s New in Deep Learning Research: Understanding Meta-Learning
8.
Learning a Similarity Metric Discriminatively, with Application to Face Verification
9.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
10.
The Rise of Meta Learning
>>更多相關文章<<