JavaShuo
欄目
標籤
Few-shot Learning with Meta Metric Learners
時間 2021-01-03
欄目
HTML5
简体版
原文
原文鏈接
一、介紹 現有的基於元學習、度量學習的小樣本學習方法在處理diverse domains和various classes上存在侷限。元學習訓練一個meta learner預測具有相同結構,但針對不同任務網絡的權重。度量學習針對不同任務學習一個不隨任務改變,適應所有任務的度量。當任務間差異較大時,度量學習將會失敗,學不到這樣的度量。作者提出了一個元度量學習的方法,利用度量學習的匹配網絡作爲base
>>阅读原文<<
相關文章
1.
論文閱讀筆記《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
【2017_ICCV】Deep Metric Learning with Angular Loss
4.
Large-scale Distance Metric Learning with Uncertainty
5.
[Machine Learning]--Improving classification with the AdaBoost meta-algorithm
6.
Learning a Similarity Metric Discriminatively, with Application to Face Verification.
7.
What’s New in Deep Learning Research: Understanding Meta-Learning
8.
Learning a Similarity Metric Discriminatively, with Application to Face Verification
9.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
10.
The Rise of Meta Learning
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
ASP ServerVariables 集合
-
ASP 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
Meta-learning
learners
metric
meta
learning
with+this
with...connect
Deep Learning
with...as
by...with
HTML5
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
gitlab新建分支後,android studio拿不到
2.
Android Wi-Fi 連接/斷開時間
3.
今日頭條面試題+答案,花點時間看看!
4.
小程序時間組件的開發
5.
小程序學習系列一
6.
[微信小程序] 微信小程序學習(一)——起步
7.
硬件
8.
C3盒模型以及他出現的必要性和圓角邊框/前端三
9.
DELL戴爾筆記本關閉觸摸板觸控板WIN10
10.
Java的long和double類型的賦值操作爲什麼不是原子性的?
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文閱讀筆記《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
2.
(Fewshot detection)Review:RepMet: Representative-based metric learning for few-shot detection
3.
【2017_ICCV】Deep Metric Learning with Angular Loss
4.
Large-scale Distance Metric Learning with Uncertainty
5.
[Machine Learning]--Improving classification with the AdaBoost meta-algorithm
6.
Learning a Similarity Metric Discriminatively, with Application to Face Verification.
7.
What’s New in Deep Learning Research: Understanding Meta-Learning
8.
Learning a Similarity Metric Discriminatively, with Application to Face Verification
9.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
10.
The Rise of Meta Learning
>>更多相關文章<<