弗洛伊德算法

 弗洛伊德算法

求最短路徑ios

#include <iostream>
using namespace std;

#define MaxInt 32767                        //表示極大值,即∞
#define MVNum 100                           //最大頂點數

typedef char VerTexType;                    //假設頂點的數據類型爲字符型 
typedef int ArcType;                        //假設邊的權值類型爲整型 

int Path[MVNum][MVNum];                     //最短路徑上頂點vj的前一頂點的序號
int D[MVNum][MVNum];                        //記錄頂點vi和vj之間的最短路徑長度

//------------圖的鄰接矩陣---------------
typedef struct{ 
    VerTexType vexs[MVNum];                 //頂點表 
    ArcType arcs[MVNum][MVNum];             //鄰接矩陣 
    int vexnum,arcnum;                      //圖的當前點數和邊數 
}AMGraph;

int LocateVex(AMGraph G , VerTexType v){
    //肯定點v在G中的位置
    for(int i = 0; i < G.vexnum; ++i)
        if(G.vexs[i] == v)
            return i;
        return -1;
}//LocateVex

void CreateUDN(AMGraph &G){ 
    //採用鄰接矩陣表示法,建立有向網G 
    int i , j , k;
    cout <<"請輸入總頂點數,總邊數,以空格隔開:";
    cin >> G.vexnum >> G.arcnum;                            //輸入總頂點數,總邊數
    cout << endl;

    cout << "輸入點的名稱,如a" << endl;

    for(i = 0; i < G.vexnum; ++i){   
        cout << "請輸入第" << (i+1) << "個點的名稱:";
        cin >> G.vexs[i];                                   //依次輸入點的信息 
    }
    cout << endl;
    for(i = 0; i < G.vexnum; ++i){                          //初始化鄰接矩陣,邊的權值均置爲極大值MaxInt 
        for(j = 0; j < G.vexnum; ++j){  
            if(j != i)
                G.arcs[i][j] = MaxInt;  
            else
                G.arcs[i][j] = 0;
        }//for
    }//for

    cout << "輸入邊依附的頂點及權值,如a b 3" << endl;
    for(k = 0; k < G.arcnum;++k){                       //構造鄰接矩陣 
        VerTexType v1 , v2;
        ArcType w;
        cout << "請輸入第" << (k + 1) << "條邊依附的頂點及權值:";
        cin >> v1 >> v2 >> w;                           //輸入一條邊依附的頂點及權值
        i = LocateVex(G, v1);  j = LocateVex(G, v2);    //肯定v1和v2在G中的位置,即頂點數組的下標 
        G.arcs[i][j] = w;                               //邊<v1, v2>的權值置爲w 
    }//for
}//CreateUDN 

void ShortestPath_Floyed(AMGraph G){ 
    //用Floyd算法求有向網G中各對頂點i和j之間的最短路徑 
    int i , j , k ;
    for (i = 0; i < G.vexnum; ++i)                  //各對結點之間初始已知路徑及距離 
        for(j = 0; j < G.vexnum; ++j){ 
            D[i][j] = G.arcs[i][j]; 
            if(D[i][j] < MaxInt && i != j)  Path[i][j]=i;   //若是i和j之間有弧,則將j的前驅置爲i 
            else Path [i][j] = -1;                      //若是i和j之間無弧,則將j的前驅置爲-1 
        }//for
        for(k = 0; k < G.vexnum; ++k) 
            for(i = 0; i < G.vexnum; ++i) 
                for(j = 0; j < G.vexnum; ++j)
                    if(D[i][k] + D[k][j] < D[i][j]){        //從i經k到j的一條路徑更短 
                        D[i][j] = D[i][k]+D[k][j];          //更新D[i][j] 
                        Path[i][j] = Path[k][j];                //更改j的前驅爲k 
                    }//if 
}//ShortestPath_Floyed

void DisplayPath(AMGraph G , int begin ,int temp ){
    //顯示最短路徑
    if(Path[begin][temp] != -1){
        DisplayPath(G , begin ,Path[begin][temp]);
        cout << G.vexs[Path[begin][temp]] << "-->";
    }
}//DisplayPath

int main(){
    cout << "************算法6.11 弗洛伊德算法**************" << endl << endl;
    AMGraph G;
    char start , destination;
    int num_start , num_destination;

    CreateUDN(G);
    
    cout <<endl;
    cout << "有向網G建立完成!" << endl;
    ShortestPath_Floyed(G);

    cout << "請依次輸入路徑的起點與終點的名稱:";
    cin >> start >> destination;
    num_start = LocateVex(G , start);
    num_destination = LocateVex(G , destination);

    DisplayPath(G , num_start , num_destination);
    cout << G.vexs[num_destination] << endl;
    cout << "最短路徑的長度爲:" << D[num_start][num_destination] << endl;
    cout <<endl;
}//main
相關文章
相關標籤/搜索