藍橋杯圖論模板

1.樹的直徑

dfs版

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5+5;
vector<int> v[maxn];//鄰接表 
int deeper = 0; //1.第一次dfs結果爲樹的最大深度 2.第二次dfs結果爲樹的直徑
int node = 1;//初始化爲root

void dfs(int x,int dis){
    vis[x] = 1; 
    bool isLeaf = false;
    for(int i=0;i<v[x].size();i++){
        int vv = v[x][i];
        if(!vis[vv]){
            isLeaf = true;
            dfs(vv,dis+1);
        }
    }
    if(!isLeaf){
        if(dis > deeper){
            deeper = dis;
            node = vv;
        }
    }
    vis[x] = 0;
}

int main()[
    dfs(1,0);
    dfs(node,0);
    return 0;
}

bfs版

#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;

struct edge{
    int v,w;
    edge(int v,int w){
        this -> v = v;
        this -> w = w;
    }
};
vector<edge> vec[10001];
int d[10001],ans;
bool vis[10001];
int node; // 記錄第一次dfs最遠的點
void bfs(int u){
    queue<int> q;
    q.push(u);
    while(!q.empty()){
        int x = q.front();
        vis[x] = 1;
        q.pop();
        for(int i = 0;i < (int)vec[x].size();i++){
            int y = vec[x][i].v;
            if(vis[y]) continue;
            d[y] = d[x] + vec[x][i].w;
            if(d[y] > ans){
                ans = d[y];
                node = y;
            }
            q.push(y);
        }
    }
}
int main(){
    // freopen("test.txt","r",stdin);
    int u,v,w;
    while(scanf("%d%d%d",&u,&v,&w) == 3){
        vec[u].push_back(edge(v,w));
        vec[v].push_back(edge(u,w));
    }
    memset(vis,0,sizeof(vis));
    ans = 0;
    d[1] = 0;
    bfs(1);
    memset(vis,0,sizeof(vis));
    ans = 0;
    d[node] = 0;
    bfs(node);
    printf("%d\n",ans);
    return 0;
}

2.帶權並查集

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e6+10;

int n,m;//n個頂點 m條邊 
int father[maxn]; //元素父親節點 
int size[maxn];//集合大小 
int maxs[maxn];//集合最大值 
int dist[maxn];//元素x到它所在集合根節點的距離 
int setNums = 0;//集合總數 

//初始化 
void init(){
    setNums = n;
    for(int i=1;i<=n;i++){
        father[i] = i;
        size[i] = 1;
        maxs[i] = i;
        dist[i] = 0;
    }
}

//查找 
int find(int x){
    if(father[x] == x){
        return x;
    }
    int y = father[x];
    father[x] = find(y);
    dist[x] += dist[y]; //x到根的距離 須要加上y到根的距離 
    return father[x];
}

//合併 
void join(int x,int y){
    int a = find(x);
    int b = find(y);
    if(a != b){
        setNums--;
        father[a] = b;
        dist[a] = size[b];
        size[b] += size[a];
        maxs[b] = max(maxs[a],maxs[b]);
    }
}

//查詢集合總數量 
int findSetnum(){
    return setNums;
}

//查詢x所在集合的大小(元素數量)
int findSize(int x){
    return size(find(x));
}

//查詢x所在集合中的最大值 
int findSetMax(int x){
    return maxs(find(x));
}

//查詢x到它的集合的根 的距離
int findDist(int x){
    return dist[x];
}

int main(){
    
    return 0;
}

3.最短路

floyd

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1010;
int g[maxn][maxn];
const int inf = 0x3f3f3f3f;

void init(){
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            if(i==j) g[i][j] = 0;
            else g[i][j] == inf;
        }
    }
}

void floyd(){
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int k=1;k<=n;k++){
                if(g[i][j] > g[i][k] + g[k][i]){
                    g[i][j] = g[i][k] + g[k][i];
                }
            }
        }
    }
}

int main(){
    init();
    floyd();
    return 0;
}

SPFA

void spfa(int s){
    memset(inq,0,sizeof(inq));
    memset(d,0x3f3f3f3f,sizeof(d));
    d[s] = 0;
    inq[s] = true;
    queue<int> q;
    q.push(s);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        inq[u] = false;
        for(int i=0;i<v[u].size();i++){
            int vv = v[u][i].x;
            if(d[vv] >  d[u] + v[u][i].w){
                d[vv] = d[u] + v[u][i].w;
                if(!inq[vv]){
                    q.push(vv);
                    inq[vv] = 1;
                }
            }
        }
    }
}

dijkstra

bool dijkstra(int s){
    memset(vst,0,sizeof(vst));
    memset(dist,0x3f3f3f3f,sizeof(dist));
    dist[s] = 0;
    for(int i=0;i<n;i++){
        int v,min_w = inf;
        for(int j=0;j<n;j++){
            if(!vst[j] && dist[j] < min_w){
                min_w = dist[j];
                v = j;
            }
        }
        if(min_w == inf){ //有頂點沒法從原點到達 
            return false;
        }
        vst[v] = true;
        for(int j=p[v];j!=-1;j=e[j].next){
            int x = e[j].v;
            if(!vst[x] && dist[v] + e[j].w < dist[x]){
                dist[x] = dist[v] + e[j].w;
            }
        }
    }
}

bool dijkstra(int s){
    memset(vst,0,sizeof(vst));
    memset(dist,0x3f3f3f3f,sizeof(dist));
    priority_queue<node> min_heap;
    dist[s] = 0;
    min_heap.push(node(s,0));
    while(!min_heap.empty()){
        int v = min_heap.top().u;
        min_heap.pop();
        if(vst[v]) continue;
        vst[v] = true;
        for(int j=p[v];j!=-1;j++){
            int x = e[j].v;
            if(!vst[x] && dist[v] + e[j].w < dist[x]){
                dist[x] = dist[v] + e[j].w;
                min_heap.push(node(x,dist[x]));
            }
        }
    }
    return true;
}

4.tarjan

#include<bits/stdc++.h>
using namespace std;


const int maxn = 1e5+5;
vector<int> g[maxn];
int belong[maxn],scc = 0;
int idx = 0;
int dfn[maxn],low[maxn];
bool ins[maxn];
stack<int> s;

void tarjan(int u){
    dfn[u] = low[u] = ++idx;
    s.push(u);
    ins[u] = 1;
    for(int i=0;i<g[u].size();i++){
        int v = g[u][i];
        if(!dfn[v]){
            tarjan(v);
            low[u] = min(low[u],low[v]);
        }else if(ins[v]){
            low[u] = min(low[u],dfn[v]);
        }
    }
    int vv;
    if(dfn[u] == low[u]){
        ++scc;
        do{
            vv = s.top();
            belong[vv] = scc;
            ins[vv] = false;
            s.pop();
        }while(vv != u);
    }
}


int main(){
    int n,m;
    cin>>n>>m;
    memset(dfn,0,sizeof(dfn));
    memset(low,0,sizeof(low));
    idx = 0;
    for(int i=1;i<=m;i++){
        int u,v;
        cin>>u>>v;
        g[u].push_back(v);
    }
    for(int i=1;i<=n;i++){
        if(!dfn[i]){
            tarjan(i);
        }
    }
    for(int i=1;i<=scc;i++){
        cout<<"block "<<i<<": ";
        for(int j=1;j<=n;j++){
            if(belong[j] == i){
                cout<<j<<" ";
            }
        }
        cout<<endl;
    }
    return 0;
}
/*
4 4
1 2
2 3
3 1
2 4
*/
相關文章
相關標籤/搜索