Ubuntu18.04下深度學習環境---TensorFlow(GPU)環境搭建

Ubuntu18.04下深度學習環境—TensorFlow(GPU)環境搭建

本人已是第二次搭建環境,此次徹底採用Anaconda進行環境搭建.系統環境也是從新裝機的新系統python

安裝步驟

1. 驅動安裝

  • 添加顯卡驅動源shell

    sudo add-apt-repository ppa:graphics-drivers/ppa
  • 更新附加驅動學習

    sudo apt-get updata
  • 安裝驅動spa

    打開"軟件和更新"->"附加驅動",能夠看到已經有顯卡驅動添加到附加驅動中,只須要選擇安裝便可
    安裝完成後,須要重啓才能夠生效

    在這裏插入圖片描述

  • 驗證code

    nvidia-smi

    在這裏插入圖片描述

2. 安裝Anaconda

  • 選擇本身須要的版本下載,執行blog

    sudo sh XXX.sh
    #安裝過程重須要確認,根據提示輸入yes/enter便可
  • 添加conda到系統變量中圖片

    vi /etc/profile
    #添加
    export PATH="/home/dell/anaconda3/bin:$PATH"
    #後面的路徑是本人本身的安裝路徑,須要修改成本身的安裝路徑,anaconda的默認安裝路徑爲當前用戶下的anaconda3/
    source /etc/profile #使環境變量生效,若是這樣無論用的話,就重啓.重啓後,系統默認爲base下的虛擬環境
  • 驗證condaget

    #輸入
    conda -V
    #顯示版本號即爲安裝成功
  • 問題深度學習

    在使用conda install 命令時會出現安裝權限的問題,此時須要修改conda的權限
    sudo chmod -R 777 /home/dell/anaconda3

3. 安裝cuda

注意:cuda的版本必定要和驅動的版本相匹配,否則一切都是白作.個人驅動版本安裝的是390,對應的cuda應該是9.1,可是在利用conda search cudatoolkit查看cuda版本的時候,並無9.1版本,因此安裝的是cuda9.0版本it

  • 安裝

    conda install cudatoolkit==9.0

4. 安裝cudnn和tensorflow-gpu

在這裏就體現出了conda安裝的方便之處,它會自動匹配相應的版本進行安裝

  • 命令

    conda install cudnn
    conda install tensorflow-gpu

5. 驗證環境

  • 運行程序

    import tensorflow as tf
    with tf.device('/cpu:0'):
        a=tf.constant([1.0,2.0,3.0],shape=[3],name='a')
        b=tf.constant([1.0,2.0,3.0],shape=[3],name='b')
    with tf.device('/gpu:0'):
        c = a + b
    sess=tf.Session(config=tf.ConfigProto(log_device_placement=True))
    print(sess.run(c))
  • 運行結果
    在這裏插入圖片描述

其實,只要沒報錯就說明安裝成功!!!

相關文章
相關標籤/搜索