原文地址:git
https://www.jianshu.com/p/1b1ea45fab47網絡
yanghedadasession
-----------------------------------------------------------------------------------函數
1: static_rnnlua
x = tf.placeholder("float", [None, n_steps, n_input]) x1 = tf.unstack(x, n_steps, 1) lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
2: dynamic_rnnspa
x = tf.placeholder("float", [None, n_steps, n_input]) lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) outputs,_ = tf.nn.dynamic_rnn(lstm_cell ,x,dtype=tf.float32) outputs = tf.transpose(outputs, [1, 0, 2]) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None)
1.tf.nn.dynamic_rnn與tf.contrib.rnn.static_rnn輸入格式不一樣。
2.tf.nn.dynamic_rnn與tf.contrib.rnn.static_rnn輸出格式不一樣。
3.tf.nn.dynamic_rnn與tf.contrib.rnn.static_rnn內部訓練方式。.net
能夠參考:https://blog.csdn.net/mzpmzk/article/details/80573338調試
import tensorflow as tf # 導入 MINST 數據集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True) n_input = 28 # MNIST data 輸入 (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST 列別 (0-9 ,一共10類) batch_size = 128 tf.reset_default_graph() # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0) outputs,_ = tf.nn.dynamic_rnn(lstm_cell,x,dtype=tf.float32) outputs = tf.transpose(outputs, [1, 0, 2]) #取最後一條輸出信息,(outputs[-1]) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001 training_iters = 100000 display_step = 10 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 啓動session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.reshape((batch_size, n_steps, n_input)) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0: # 計算批次數據的準確率 acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + \ "{:.5f}".format(acc)) step += 1 print (" Finished!") # 計算準確率 for 128 mnist test images test_len = 128 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print ("Testing Accuracy:", \ sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
靜態RNNcode
import tensorflow as tf # 導入 MINST 數據集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True) n_input = 28 # MNIST data 輸入 (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST 列別 (0-9 ,一共10類) batch_size = 128 tf.reset_default_graph() # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0) x1 = tf.unstack(x, n_steps, 1) lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0) outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) #取最後一條輸出信息,(outputs[-1]) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001 training_iters = 100000 display_step = 10 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 啓動session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.reshape((batch_size, n_steps, n_input)) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0: # 計算批次數據的準確率 acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + \ "{:.5f}".format(acc)) step += 1 print (" Finished!") # 計算準確率 for 128 mnist test images test_len = 128 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print ("Testing Accuracy:", \ sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
本代碼源自:
凱文自學TensorFloworm
# -*- coding: utf-8 -*- import tensorflow as tf # 導入 MINST 數據集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("c:/user/administrator/data/", one_hot=True) n_input = 28 # MNIST data 輸入 (img shape: 28*28) n_steps = 28 # timesteps n_hidden = 128 # hidden layer num of features n_classes = 10 # MNIST 列別 (0-9 ,一共10類) batch_size = 128 tf.reset_default_graph() # tf Graph input x = tf.placeholder("float", [None, n_steps, n_input]) y = tf.placeholder("float", [None, n_classes]) #重置x以適合tf.contrib.rnn.static_rnn所要求的格式 #x1 = tf.unstack(x, n_steps, 1) #BasicLSTMCell(num_units: 是指一個Cell中神經元的個數,forget_bias:忘記門記住多少,1.0表明所有記住) #靜態 (tf.contrib.rnn.static_rnn)的意思就是按照樣本時間序列個數(n_steps)展開,在圖中建立(n_steps)個序列的cell; #動態(tf.nn.dynamic_rnn)的意思是隻建立樣本中的一個序列RNN,其餘序列數據會經過循環進入該RNN運算 """ 經過靜態生成的RNN網絡,生成過程所需的時間會更長,網絡所佔有的內存會更多,導出的模型會更大 。模型中會帶有第個序列中間態的信息,利於調試。在使用時必須與訓練的樣本序列個數相同。經過動 態生成的RNN網絡,所佔用內存較少。模型中只會有最後的狀態,在使用時還能支持不一樣的序列個數。 """ #lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0) #outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) """ #2 LSTMCell,LSTM實現的一個高級版本(use_peepholes:默認False,True表示啓用peephole鏈接) cell_clip:是否在輸出前對cell狀態按照給定值進行截斷處理 initializer:指定初始化函數 num_proj:經過projection進行模型壓縮的輸出維度 proj_clip:將num_proj按照給定的proj_clip截斷 """ #lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0) #outputs, states = tf.contrib.rnn.static_rnn(lstm_cell, x1, dtype=tf.float32) #3 gru類定義 #gru = tf.contrib.rnn.GRUCell(n_hidden) #outputs = tf.contrib.rnn.static_rnn(gru, x1, dtype=tf.float32) #4 建立動態RNN,此時的輸入是x,是動態的[None, n_steps, n_input]LIST #具體定義參考https://blog.csdn.net/mzpmzk/article/details/80573338 gru = tf.contrib.rnn.GRUCell(n_hidden) outputs,_ = tf.nn.dynamic_rnn(gru,x,dtype=tf.float32) outputs = tf.transpose(outputs, [1, 0, 2]) #取最後一條輸出信息,(outputs[-1]) pred = tf.contrib.layers.fully_connected(outputs[-1],n_classes,activation_fn = None) learning_rate = 0.001 training_iters = 100000 display_step = 10 # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 啓動session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Reshape data to get 28 seq of 28 elements batch_x = batch_x.reshape((batch_size, n_steps, n_input)) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0: # 計算批次數據的準確率 acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y}) print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + \ "{:.5f}".format(acc)) step += 1 print (" Finished!") # 計算準確率 for 128 mnist test images test_len = 128 test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input)) test_label = mnist.test.labels[:test_len] print ("Testing Accuracy:", \ sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
-----------------------------------------------------------------------------------