JavaShuo
欄目
標籤
A Distributional Perspective on Reinforcement Learning
時間 2021-01-02
原文
原文鏈接
傳統的強化學習算法例如Q-learning算法學習的是state-action值函數,而這篇文章的核心是學習state-action的概率分佈。 具體各簡單的例子:例如我們在上班是需要經過6站地鐵,每站地鐵平均需要5分鐘,則上上班需要30分鐘。如果每個星期(5天),地鐵都會出毛病,則就需要耽誤耽擱一個小時。正常情況下上班的時間期望,也就是均值是30分鐘,在火車出現故障的情況下,則每天的上班時間期望
>>阅读原文<<
相關文章
1.
Machine Learning A Probabilistic Perspective 1.Introduction
2.
A thorough understanding of on-policy and off-policy in Reinforcement learning
3.
Differentially Private Federated Learning: A Client Level Perspective
4.
【資源】Machine Learning A Bayesian_and Optimization Perspective(MLBOP)
5.
Building a ROS simulation platform for Deep Reinforcement Learning research ...
6.
A Survey on Transfer Learning
7.
Introduction to Reinforcement Learning
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Playing Atari with Deep Reinforcement Learning
10.
Reinforcement Learning Exercise 4.1
更多相關文章...
•
Eclipse 視圖
-
Eclipse 教程
•
Web 品質- 可讀性
-
網站品質教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
perspective
reinforcement
learning
a'+'a
a+aa+aaa+a...a
Deep Learning
Meta-learning
Learning Perl
join..on
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Android Studio3.4中出現某個項目全部亂碼的情況之解決方式
2.
Packet Capture
3.
Android 開發之 仿騰訊視頻全部頻道 RecyclerView 拖拽 + 固定首個
4.
rg.exe佔用cpu導致卡頓解決辦法
5.
X64內核之IA32e模式
6.
DIY(也即Build Your Own) vSAN時,選擇SSD需要注意的事項
7.
選擇深圳網絡推廣外包要注意哪些問題
8.
店鋪運營做好選款、測款的工作需要注意哪些東西?
9.
企業找SEO外包公司需要注意哪幾點
10.
Fluid Mask 摳圖 換背景教程
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Machine Learning A Probabilistic Perspective 1.Introduction
2.
A thorough understanding of on-policy and off-policy in Reinforcement learning
3.
Differentially Private Federated Learning: A Client Level Perspective
4.
【資源】Machine Learning A Bayesian_and Optimization Perspective(MLBOP)
5.
Building a ROS simulation platform for Deep Reinforcement Learning research ...
6.
A Survey on Transfer Learning
7.
Introduction to Reinforcement Learning
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Playing Atari with Deep Reinforcement Learning
10.
Reinforcement Learning Exercise 4.1
>>更多相關文章<<