JavaShuo
欄目
標籤
A Distributional Perspective on Reinforcement Learning
時間 2021-01-02
原文
原文鏈接
傳統的強化學習算法例如Q-learning算法學習的是state-action值函數,而這篇文章的核心是學習state-action的概率分佈。 具體各簡單的例子:例如我們在上班是需要經過6站地鐵,每站地鐵平均需要5分鐘,則上上班需要30分鐘。如果每個星期(5天),地鐵都會出毛病,則就需要耽誤耽擱一個小時。正常情況下上班的時間期望,也就是均值是30分鐘,在火車出現故障的情況下,則每天的上班時間期望
>>阅读原文<<
相關文章
1.
Machine Learning A Probabilistic Perspective 1.Introduction
2.
A thorough understanding of on-policy and off-policy in Reinforcement learning
3.
Differentially Private Federated Learning: A Client Level Perspective
4.
【資源】Machine Learning A Bayesian_and Optimization Perspective(MLBOP)
5.
Building a ROS simulation platform for Deep Reinforcement Learning research ...
6.
A Survey on Transfer Learning
7.
Introduction to Reinforcement Learning
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Playing Atari with Deep Reinforcement Learning
10.
Reinforcement Learning Exercise 4.1
更多相關文章...
•
Eclipse 視圖
-
Eclipse 教程
•
Web 品質- 可讀性
-
網站品質教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
perspective
reinforcement
learning
a'+'a
a+aa+aaa+a...a
Deep Learning
Meta-learning
Learning Perl
join..on
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
部署Hadoop(3.3.0)僞分佈式集羣
2.
從0開始搭建hadoop僞分佈式集羣(三:Zookeeper)
3.
centos7 vmware 搭建集羣
4.
jsp的page指令
5.
Sql Server 2008R2 安裝教程
6.
python:模塊導入import問題總結
7.
Java控制修飾符,子類與父類,組合重載覆蓋等問題
8.
(實測)Discuz修改論壇最後發表的帖子的鏈接爲靜態地址
9.
java參數傳遞時,究竟傳遞的是什麼
10.
Linux---文件查看(4)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Machine Learning A Probabilistic Perspective 1.Introduction
2.
A thorough understanding of on-policy and off-policy in Reinforcement learning
3.
Differentially Private Federated Learning: A Client Level Perspective
4.
【資源】Machine Learning A Bayesian_and Optimization Perspective(MLBOP)
5.
Building a ROS simulation platform for Deep Reinforcement Learning research ...
6.
A Survey on Transfer Learning
7.
Introduction to Reinforcement Learning
8.
A Unified Game-Theoretic Approach to Multi-agent Reinforcement Learning
9.
Playing Atari with Deep Reinforcement Learning
10.
Reinforcement Learning Exercise 4.1
>>更多相關文章<<