Nebula-orchestartor能夠跨數據中心進行容器資源的管理。傳統的資源協調器例如YARN/Mesos/Kubernetes都是在數據中心內部使用,假設集羣內經過高速網絡鏈接,主要用於數據密集或計算密集的場合。對於IoT、邊緣計算、霧計算、多數據中心互聯等廣域網應用來講,面對傳輸延遲、低帶寬、數據同步、容錯恢復、服務路由、災難備份等各類狀況,須要開發新的解決方案。Nebula-orchestartor採用MongoDB進行數據存儲,rabbitMQ做爲數據通信,具備擴展到廣域網資源調度的潛力,不過目前還在早期發展階段。這裏經過一個簡單的實例,能夠體驗Nebula-orchestartor的操做模式和能力。linux
參見:nginx
瞭解新技術的最好辦法是親自動手去作一作。下面的教程使用docker-compose快速設置一個 Nebula 集羣。要求docker & docker-compose預先安裝,推薦使用Docker for Mac的最新版本。git
docker-compose up -d
(you might need to sudo su
first if you didn't set your user to be part of the docker group), don't worry if you see the worker-manager & api-manager restarting, it's because the mongo & rabbit containers aren't configured yet so they fail to connect to it建立database的user & schema,命令以下:github
docker exec -it mongo mongo use nebula db.createUser( { user: "nebula", pwd: "nebula", roles: [ "readWrite" ] } )
退出容器 (ctrl-d)。docker
建立 rabbitMQ的 user 和 vhost,命令以下:json
docker exec -it rabbit sh rabbitmqctl add_vhost nebula rabbitmqctl add_user nebula nebula rabbitmqctl set_permissions -p nebula nebula ".*" ".*" ".*"
退出容器 (ctrl-d)。api
如今Nebula cluster已經運行起來了, lets use Curl to create an nginx app to fill the "example" APP_NAME app that the worker-manager has set to manage:網絡
curl -X POST \ http://127.0.0.1/api/apps/example \ -H 'authorization: Basic bmVidWxhOm5lYnVsYQ==' \ -H 'cache-control: no-cache' \ -H 'content-type: application/json' \ -d '{ "starting_ports": [{"81":"80"}], "containers_per": {"server": 1}, "env_vars": {}, "docker_image" : "nginx", "running": true, "volumes": ["/tmp:/tmp/1", "/var/tmp/:/var/tmp/1:ro"], "networks": ["nebula"], "privileged": false, "devices": [] }'
由於須要下載Nginx容器,若是之前機器上沒有鏡像,須要耐心等待.......app
可使用下面的命令查看進度(一直等待到結束通知):curl
docker logs -f work-manager
Either wait for the changes to catch (usually few seconds at most) or restart the worker-manager container, you now have your first nebula worker (try logging into 127.0.0.1:81 in your browser to see), because the network is internal in this tutorial you can only run more on the same machine (which kinda defeats the purpose) but after you deploy Nebula by following the install guide you can run as many workers as you need by having multiple servers running the same worker-manager container with the same envvars\config file.
視頻教程: asciinema