簡介:python
dlib庫是一個很經典的用於圖像處理的開源庫,shape_predictor_68_face_landmarks.dat是一個用於人臉68個關鍵點檢測的dat模型庫,使用這個模型庫能夠很方便地進行人臉檢測,並進行簡單的應用。web
簡單實現一下疲勞檢測功能,對視頻中每幀圖片檢測眼睛長/寬的值是否大於閾值,連續超過50次則認爲已經「睡着」,閾值的獲取方式是:先採集30次數據,取其平均值做爲默認的值。爲了數據的準確,採集數據時應該平視攝像頭。數組
(不過僅經過檢測眼睛是否閉合來判斷是否疲勞存在不少偏差,也由於受各方面干擾比較難處理,最準確的大概是檢測生理信息吧,然而檢測生理信息又很不實用_(:з)∠)_。。。)ide
人臉68個特徵點分佈圖:idea
人臉68個特徵點模型庫shape_predictor_68_face_landmarks.dat下載地址:spa
https://pan.baidu.com/s/133Rk9f7iWAF2WApl-a69-A 密碼:sl19命令行
python代碼實現:線程
from scipy.spatial import distance as dis from imutils.video import VideoStream from imutils import face_utils from threading import Thread import numpy as np import pyglet import argparse import imutils import time import dlib import cv2 #計算嘴的長寬比,euclidean(u, v, w=None)用於計算兩點的歐幾里得距離 def mouthRatio(mouth): left=dis.euclidean(mouth[2],mouth[10]) mid=dis.euclidean(mouth[3],mouth[9]) right=dis.euclidean(mouth[4],mouth[8]) horizontal=dis.euclidean(mouth[0],mouth[6]) return 10.0*horizontal/(3.0*left+4.0*mid+3.0*right) #計算眼睛的長寬比 def eyesRatio(eye): left = dis.euclidean(eye[1], eye[5]) right = dis.euclidean(eye[2], eye[4]) horizontal = dis.euclidean(eye[0], eye[3]) return 2.0*horizontal/(left+right) #建立一個解析對象,向該對象中添加關注的命令行參數和選項,而後解析 ap = argparse.ArgumentParser() ap.add_argument("-w", "--webcam", type=int, default=0) args = vars(ap.parse_args()) #眼睛長寬比的閾值,若是超過這個值就表明眼睛長/寬大於採集到的平均值,默認已經"閉眼" eyesRatioLimit=0 #數據採集的計數,採集30次而後取平均值 collectCount=0 #用於數據採集的求和 collectSum=0 #是否開始檢測 startCheck=False #統計"閉眼"的次數 eyesCloseCount=0 #初始化dlib detector=dlib.get_frontal_face_detector() predictor=dlib.shape_predictor("68_face_landmarks.dat") #獲取面部各器官的索引 #左右眼 (left_Start,left_End)=face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (right_Start,right_End)=face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] #嘴 (leftMouth,rightMouth)=face_utils.FACIAL_LANDMARKS_IDXS['mouth'] #下巴 (leftJaw,rightJaw)=face_utils.FACIAL_LANDMARKS_IDXS['jaw'] #鼻子 (leftNose,rightNose)=face_utils.FACIAL_LANDMARKS_IDXS['nose'] #左右眉毛 (left_leftEyebrow,left_rightEyebrow)=face_utils.FACIAL_LANDMARKS_IDXS['left_eyebrow'] (right_leftEyebrow,right_rightEyebrow)=face_utils.FACIAL_LANDMARKS_IDXS['right_eyebrow'] #開啓視頻線程,延遲2秒鐘 vsThread=VideoStream(src=args["webcam"]).start() time.sleep(2.0) #循環檢測 while True: #對每一幀進行處理,設置寬度並轉化爲灰度圖 frame = vsThread.read() frame = imutils.resize(frame, width=720) img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #檢測灰度圖中的臉 faces = detector(img, 0) for k in faces: #肯定面部區域的面部特徵點,將特徵點座標轉換爲numpy數組 shape = predictor(img, k) shape = face_utils.shape_to_np(shape) #左右眼 leftEye = shape[left_Start:left_End] rightEye = shape[right_Start:right_End] leftEyesVal = eyesRatio(leftEye) rightEyesVal = eyesRatio(rightEye) #凸殼 leftEyeHull = cv2.convexHull(leftEye) rightEyeHull = cv2.convexHull(rightEye) #繪製輪廓 cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1) #取兩隻眼長寬比的的平均值做爲每一幀的計算結果 eyeRatioVal = (leftEyesVal + rightEyesVal) / 2.0 #嘴 mouth=shape[leftMouth:rightMouth] mouthHull=cv2.convexHull(mouth) cv2.drawContours(frame, [mouthHull], -1, (0, 255, 0), 1) #鼻子 nose=shape[leftNose:rightNose] noseHull=cv2.convexHull(nose) cv2.drawContours(frame, [noseHull], -1, (0, 255, 0), 1) #下巴 jaw=shape[leftJaw:rightJaw] jawHull=cv2.convexHull(jaw) cv2.drawContours(frame, [jawHull], -1, (0, 255, 0), 1) #左眉毛 leftEyebrow=shape[left_leftEyebrow:left_rightEyebrow] leftEyebrowHull=cv2.convexHull(leftEyebrow) cv2.drawContours(frame, [leftEyebrowHull], -1, (0, 255, 0), 1) #右眉毛 rightEyebrow=shape[right_leftEyebrow:right_rightEyebrow] rightEyebrowHull=cv2.convexHull(rightEyebrow) cv2.drawContours(frame, [rightEyebrowHull], -1, (0, 255, 0), 1) if collectCount<30: collectCount+=1 collectSum+=eyeRatioVal cv2.putText(frame, "DATA COLLECTING", (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2) startCheck=False else: if not startCheck: eyesRatioLimit=collectSum/(1.0*30) print('眼睛長寬比均值',eyesRatioLimit) startCheck=True if startCheck: #若是眼睛長寬比大於以前檢測到的閾值,則計數,閉眼次數超過50次則認爲已經"睡着" if eyeRatioVal > eyesRatioLimit: eyesCloseCount += 1 if eyesCloseCount >= 50: cv2.putText(frame, "SLEEP!!!", (580, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2) else: eyesCloseCount = 0 print('眼睛實時長寬比:{:.2f} '.format(eyeRatioVal)) #眼睛長寬比 cv2.putText(frame, "EYES_RATIO: {:.2f}".format(eyeRatioVal), (20, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 160, 0), 2) #閉眼次數 cv2.putText(frame,"EYES_COLSE: {}".format(eyesCloseCount),(320,30),cv2.FONT_HERSHEY_SIMPLEX,0.6,(0,160,0),2) #經過檢測嘴的長寬比檢測有沒有打哈欠,後來以爲沒什麼卵用 #cv2.putText(frame,"MOUTH_RATIO: {:.2f}".format(mouthRatio(mouth)),(30, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF #中止 if key == ord("S"): break cv2.destroyAllWindows() vsThread.stop()
檢測結果:code