Paging Library源碼淺析

首先仍是放上官方文檔地址:developer.android.google.cn/topic/libra…html

若是你還不知道這個庫是能夠作什麼事,能夠看官方文檔事例或者參考我以前寫的這篇文章:android

juejin.im/post/5a066b….
安全

目前該庫還處於測試階段,因此我就按上篇文章的內容進行部分簡單的源碼分析,從中你應該能夠了解到該庫的設計思路.bash

直接進入正題,先寫簡單的demo,首先建立咱們的model.網絡

MainData:多線程

public class MainData extends AndroidViewModel {

    /**
     * 每次須要10個數據.
     */
    private static final int NEED_NUMBER = 10;

    /**
     * 福利第一頁.
     */
    private static final int PAGE_FIRST = 1;

    /**
     * 分頁.
     */
    private int mPage = PAGE_FIRST;


    /**
     * 列表數據.
     */
    private LiveData<PagedList<GankData>> mDataLiveData;

    public MainData(@NonNull Application application) {
        super(application);
    }

    public LiveData<PagedList<GankData>> getDataLiveData() {
        initPageList();
        return mDataLiveData;
    }

    /**
     * 初始化pageList.
     */
    private void initPageList() {
        //獲取dataSource,列表數據都從這裏獲取,
        final DataSource<Integer, GankData> tiledDataSource = new TiledDataSource<GankData>() {
            /**
             * 須要的總個數,若是數量不定,就傳COUNT_UNDEFINED.
             */
            @Override
            public int countItems() {
                return DataSource.COUNT_UNDEFINED;
            }

            /**
             * 返回須要加載的數據.
             * 這裏是在線程異步中執行的,因此咱們能夠同步請求數據而且返回
             * @param startPosition 如今第幾個數據
             * @param count 加載的數據數量
             */
            @Override
            public List<GankData> loadRange(int startPosition, int count) {
                List<GankData> gankDataList = new ArrayList<>();

                //這裏咱們用retrofit獲取數據,每次獲取十條數據,數量不爲空,則讓mPage+1
                try {
                    Response<BaseResponse<List<GankData>>> execute = RetrofitApi.getInstance().mRetrofit.create(AppService.class)
                            .getWelfare1(mPage, NEED_NUMBER).execute();
                    gankDataList.addAll(execute.body().getResults());

                    if (!gankDataList.isEmpty()) {
                        mPage++;
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }

                return gankDataList;
            }
        };

        //這裏咱們建立LiveData<PagedList<GankData>>數據,
        mDataLiveData = new LivePagedListProvider<Integer, GankData>() {

            @Override
            protected DataSource<Integer, GankData> createDataSource() {
                return tiledDataSource;
            }
        }.create(0, new PagedList.Config.Builder()
                .setPageSize(NEED_NUMBER) //每次加載的數據數量
                //距離本頁數據幾個時候開始加載下一頁數據(例如如今加載10個數據,設置prefetchDistance爲2,則滑到第八個數據時候開始加載下一頁數據).
                .setPrefetchDistance(NEED_NUMBER)
                //這裏設置是否設置PagedList中的佔位符,若是設置爲true,咱們的數據數量必須固定,因爲網絡數據數量不固定,因此設置false.
                .setEnablePlaceholders(false)
                .build());
    }
}複製代碼

這裏咱們須要建立LiveData<PagedList<GankData>>這個對象,對於LiveData以前已經講過了,若是你還不知道這個原理,能夠去看下我以前文章:juejin.im/post/5a03ed…app

首先咱們來看下PageList究竟是什麼:首先PageList是個抽象類,而且提供Build模式填充數據,首先看下它的build類:異步

public static class Builder<Key, Value> {
    private DataSource<Key, Value> mDataSource;
    private Executor mMainThreadExecutor;
    private Executor mBackgroundThreadExecutor;
    private Config mConfig;
    private Key mInitialKey;

    /**
     * Creates a {@link PagedList} with the given parameters.
     * <p>
     * This call will initial data and perform any counting needed to initialize the PagedList,
     * therefore it should only be called on a worker thread.
     * <p>
     * While build() will always return a PagedList, it's important to note that the PagedList * initial load may fail to acquire data from the DataSource. This can happen for example if * the DataSource is invalidated during its initial load. If this happens, the PagedList * will be immediately {@link PagedList#isDetached() detached}, and you can retry * construction (including setting a new DataSource). * * @return The newly constructed PagedList */ @WorkerThread @NonNull public PagedList<Value> build() { if (mDataSource == null) { throw new IllegalArgumentException("DataSource required"); } if (mMainThreadExecutor == null) { throw new IllegalArgumentException("MainThreadExecutor required"); } if (mBackgroundThreadExecutor == null) { throw new IllegalArgumentException("BackgroundThreadExecutor required"); } if (mConfig == null) { throw new IllegalArgumentException("Config required"); } return PagedList.create( mDataSource, mMainThreadExecutor, mBackgroundThreadExecutor, mConfig, mInitialKey); }複製代碼

這裏咱們看到必須填的數據有至少有四個,第一個DataSource,不用說,本身手動要建立的,兩個線程池,一個Config和一個key,咱們再來看下Config:async

public static class Config {
    final int mPageSize;
    final int mPrefetchDistance;
    final boolean mEnablePlaceholders;
    final int mInitialLoadSizeHint;

    private Config(int pageSize, int prefetchDistance,
            boolean enablePlaceholders, int initialLoadSizeHint) {
        mPageSize = pageSize;
        mPrefetchDistance = prefetchDistance;
        mEnablePlaceholders = enablePlaceholders;
        mInitialLoadSizeHint = initialLoadSizeHint;
    }

    /**
     * Builder class for {@link Config}.
     * <p>
     * You must at minimum specify page size with {@link #setPageSize(int)}.
     */
    public static class Builder {
        private int mPageSize = -1;
        private int mPrefetchDistance = -1;
        private int mInitialLoadSizeHint = -1;
        private boolean mEnablePlaceholders = true;

        /**
         * Creates a {@link Config} with the given parameters.
         *
         * @return A new Config.
         */
        public Config build() {
            if (mPageSize < 1) {
                throw new IllegalArgumentException("Page size must be a positive number");
            }
            if (mPrefetchDistance < 0) {
                mPrefetchDistance = mPageSize;
            }
            if (mInitialLoadSizeHint < 0) {
                mInitialLoadSizeHint = mPageSize * 3;
            }
            if (!mEnablePlaceholders && mPrefetchDistance == 0) {
                throw new IllegalArgumentException("Placeholders and prefetch are the only ways"
                        + " to trigger loading of more data in the PagedList, so either"
                        + " placeholders must be enabled, or prefetch distance must be > 0.");
            }

            return new Config(mPageSize, mPrefetchDistance,
                    mEnablePlaceholders, mInitialLoadSizeHint);
        }
    }複製代碼

這裏一樣採用Build模式,看下參數:mPageSize表明每次加載數量,mPrefetchDistance表明距離最後多少item數量開始加載下一頁,mInittialLoadSizeHint表明首次加載數量(可是須要配合KeyedDataSource,咱們如今用TiledDataSource,因此忽略這個屬性),mEnablePlaceholders表明是否設置null佔位符,須要加載固定數量時候能夠設置爲true,若是數量不固定則設爲false.ide

由於後面涉及到DataSource,因此咱們接下來先分析TiledDataSource.

TiledDataSource的父類DataSource.

// Since we currently rely on implementation details of two implementations,
// prevent external subclassing, except through exposed subclasses
DataSource() {
}

/**
 * 數量不定的標誌.
 */
@SuppressWarnings("WeakerAccess")
public static int COUNT_UNDEFINED = -1;

/**
 * 總數量(數量不定返回COUNT_UNDEFINED).
 */
@WorkerThread
public abstract int countItems();

/**
 * Returns true if the data source guaranteed to produce a contiguous set of items,
 * never producing gaps.
 */
abstract boolean isContiguous();

/**
 * Invalidation callback for DataSource.
 * <p>
 * Used to signal when a DataSource a data source has become invalid, and that a new data source
 * is needed to continue loading data.
 */
public interface InvalidatedCallback {
    /**
     * Called when the data backing the list has become invalid. This callback is typically used
     * to signal that a new data source is needed.
     * <p>
     * This callback will be invoked on the thread that calls {@link #invalidate()}. It is valid
     * for the data source to invalidate itself during its load methods, or for an outside
     * source to invalidate it.
     */
    @AnyThread
    void onInvalidated();
}

/**
 * 數據可用的標誌.
 */
private AtomicBoolean mInvalid = new AtomicBoolean(false);

/**
 * 回調的線程安全集合.
 */
private CopyOnWriteArrayList<InvalidatedCallback> mOnInvalidatedCallbacks =
        new CopyOnWriteArrayList<>();

/**
 * Add a callback to invoke when the DataSource is first invalidated.
 * <p>
 * Once invalidated, a data source will not become valid again.
 * <p>
 * A data source will only invoke its callbacks once - the first time {@link #invalidate()}
 * is called, on that thread.
 *
 * @param onInvalidatedCallback The callback, will be invoked on thread that
 *                              {@link #invalidate()} is called on.
 */
@AnyThread
@SuppressWarnings("WeakerAccess")
public void addInvalidatedCallback(InvalidatedCallback onInvalidatedCallback) {
    mOnInvalidatedCallbacks.add(onInvalidatedCallback);
}

/**
 * Remove a previously added invalidate callback.
 *
 * @param onInvalidatedCallback The previously added callback.
 */
@AnyThread
@SuppressWarnings("WeakerAccess")
public void removeInvalidatedCallback(InvalidatedCallback onInvalidatedCallback) {
    mOnInvalidatedCallbacks.remove(onInvalidatedCallback);
}

/**
 * 對外方法,執行回調(可是未發現任何地方調用了這個方法,估計是爲了之後擴展用).
 */
@AnyThread
public void invalidate() {
    if (mInvalid.compareAndSet(false, true)) {
        for (InvalidatedCallback callback : mOnInvalidatedCallbacks) {
            callback.onInvalidated();
        }
    }
}

/**
 * Returns true if the data source is invalid, and can no longer be queried for data.
 *
 * @return True if the data source is invalid, and can no longer return data.
 */
@WorkerThread
public boolean isInvalid() {
    return mInvalid.get();
}複製代碼

這裏須要先說下AtomicBoolean和CopyOrWriteArrayList,

AtomicBoolean:按照文檔說明,大概意思就是以原子的方式更新bollean值,其中

  • compareAndSet(boolean expect, boolean update)這個方法,
  • 這個方法主要兩個做用 1. 比較AtomicBoolean和expect的值,若是一致,執行方法內的語句。其實就是一個if語句 2. 把AtomicBoolean的值設成update 比較最要的是這兩件事是一鼓作氣的,這連個動做之間不會被打斷,任何內部或者外部的語句都不可能在兩個動做之間運行。爲多線程的控制提供瞭解決的方案。

CopyOrWriteArrayList是一個線程安全的list,它的 add和remove等一些方法都是加鎖了.

再來看下TiledDataSource:

public abstract class TiledDataSource<Type> extends DataSource<Integer, Type> {

    @WorkerThread
    @Override
    public abstract int countItems();

    @Override
    boolean isContiguous() {
        return false;
    }

    @WorkerThread
    public abstract List<Type> loadRange(int startPosition, int count);

    final List<Type> loadRangeWrapper(int startPosition, int count) {
        if (isInvalid()) {
            return null;
        }
        List<Type> list = loadRange(startPosition, count);
        if (isInvalid()) {
            return null;
        }
        return list;
    }

    ContiguousDataSource<Integer, Type> getAsContiguous() {
        return new TiledAsBoundedDataSource<>(this);
    }

    /**
     * BoundedDataSource是最終繼承ContiguousDataSource的類,這個負責包裝TiledDataSource.
     */
    static class TiledAsBoundedDataSource<Value> extends BoundedDataSource<Value> {
        final TiledDataSource<Value> mTiledDataSource;

        TiledAsBoundedDataSource(TiledDataSource<Value> tiledDataSource) {
            mTiledDataSource = tiledDataSource;
        }

        @WorkerThread
        @Nullable
        @Override
        public List<Value> loadRange(int startPosition, int loadCount) {
            return mTiledDataSource.loadRange(startPosition, loadCount);
        }
    }
}複製代碼

loadRange方法咱們用不到暫時(沒發現調用這個方法的地方),咱們只須要實現countItemsloadRange方法,咱們例子中是無限制數量,因此傳了-1,而loadRange方法是在異步線程中執行,因此這裏能夠用網絡同步請求返回數據.

而後接下來看PagedList的create方法.

@NonNull
private static <K, T> PagedList<T> create(@NonNull DataSource<K, T> dataSource,
        @NonNull Executor mainThreadExecutor,
        @NonNull Executor backgroundThreadExecutor,
        @NonNull Config config,
        @Nullable K key) {
    if (dataSource.isContiguous() || !config.mEnablePlaceholders) {
        if (!dataSource.isContiguous()) {
            //noinspection unchecked
            dataSource = (DataSource<K, T>) ((TiledDataSource<T>) dataSource).getAsContiguous();
        }
        ContiguousDataSource<K, T> contigDataSource = (ContiguousDataSource<K, T>) dataSource;
        return new ContiguousPagedList<>(contigDataSource,
                mainThreadExecutor,
                backgroundThreadExecutor,
                config,
                key);
    } else {
        return new TiledPagedList<>((TiledDataSource<T>) dataSource,
                mainThreadExecutor,
                backgroundThreadExecutor,
                config,
                (key != null) ? (Integer) key : 0);
    }
}
複製代碼

根據一系列條件,咱們獲取的PagedList是ContiguousPagedList.

而後咱們能夠來看LiveData<PagedList<GankData>>是怎麼建立的了:

來看下LivePagedListProvider:

public abstract class LivePagedListProvider<Key, Value> {

    /**
     * Construct a new data source to be wrapped in a new PagedList, which will be returned
     * through the LiveData.
     *
     * @return The data source.
     */
    @WorkerThread
    protected abstract DataSource<Key, Value> createDataSource();

    /**
     * Creates a LiveData of PagedLists, given the page size.
     * <p>
     * This LiveData can be passed to a {@link PagedListAdapter} to be displayed with a
     * {@link android.support.v7.widget.RecyclerView}.
     *
     * @param initialLoadKey Initial key used to load initial data from the data source.
     * @param pageSize Page size defining how many items are loaded from a data source at a time.
     *                 Recommended to be multiple times the size of item displayed at once.
     *
     * @return The LiveData of PagedLists.
     */
    @AnyThread
    @NonNull
    public LiveData<PagedList<Value>> create(@Nullable Key initialLoadKey, int pageSize) {
        return create(initialLoadKey,
                new PagedList.Config.Builder()
                        .setPageSize(pageSize)
                        .build());
    }

    /**
     * Creates a LiveData of PagedLists, given the PagedList.Config.
     * <p>
     * This LiveData can be passed to a {@link PagedListAdapter} to be displayed with a
     * {@link android.support.v7.widget.RecyclerView}.
     *
     * @param initialLoadKey Initial key to pass to the data source to initialize data with.
     * @param config PagedList.Config to use with created PagedLists. This specifies how the
     *               lists will load data.
     *
     * @return The LiveData of PagedLists.
     */
    @AnyThread
    @NonNull
    public LiveData<PagedList<Value>> create(@Nullable final Key initialLoadKey,
            final PagedList.Config config) {
        return new ComputableLiveData<PagedList<Value>>() {
            @Nullable
            private PagedList<Value> mList;
            @Nullable
            private DataSource<Key, Value> mDataSource;

            private final DataSource.InvalidatedCallback mCallback =
                    new DataSource.InvalidatedCallback() {
                @Override
                public void onInvalidated() {
                    invalidate();
                }
            };

            @Override
            protected PagedList<Value> compute() {
                @Nullable Key initializeKey = initialLoadKey;
                if (mList != null) {
                    //noinspection unchecked
                    initializeKey = (Key) mList.getLastKey();
                }

                do {
                    if (mDataSource != null) {
                        mDataSource.removeInvalidatedCallback(mCallback);
                    }

                    mDataSource = createDataSource();
                    mDataSource.addInvalidatedCallback(mCallback);

                    mList = new PagedList.Builder<Key, Value>()
                            .setDataSource(mDataSource)
                            .setMainThreadExecutor(ArchTaskExecutor.getMainThreadExecutor())
                            .setBackgroundThreadExecutor(
                                    ArchTaskExecutor.getIOThreadExecutor())
                            .setConfig(config)
                            .setInitialKey(initializeKey)
                            .build();
                } while (mList.isDetached());
                return mList;
            }
        }.getLiveData();
    }
複製代碼

代碼很簡單(忽略那些mCallback,現階段徹底用不到),只要咱們重寫傳入DataSource,建立的主要類是ComputableLiveData幹得,看一下:

@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public abstract class ComputableLiveData<T> {

    private final LiveData<T> mLiveData;

    private AtomicBoolean mInvalid = new AtomicBoolean(true);
    private AtomicBoolean mComputing = new AtomicBoolean(false);

    /**
     * Creates a computable live data which is computed when there are active observers.
     * <p>
     * It can also be invalidated via {@link #invalidate()} which will result in a call to
     * {@link #compute()} if there are active observers (or when they start observing)
     */
    @SuppressWarnings("WeakerAccess")
    public ComputableLiveData() {
        mLiveData = new LiveData<T>() {
            @Override
            protected void onActive() {
                // TODO if we make this class public, we should accept an executor
                ArchTaskExecutor.getInstance().executeOnDiskIO(mRefreshRunnable);
            }
        };
    }

    /**
     * Returns the LiveData managed by this class.
     *
     * @return A LiveData that is controlled by ComputableLiveData.
     */
    @SuppressWarnings("WeakerAccess")
    @NonNull
    public LiveData<T> getLiveData() {
        return mLiveData;
    }

    /**
     * mInvalid默認爲true,這裏能夠一條線執行下去,PagedList就是上面那個compute裏新建的對象,
     * 而且執行了postValue方法,觀察者那邊能夠就收到通知了.
     */
    @VisibleForTesting
    final Runnable mRefreshRunnable = new Runnable() {
        @WorkerThread
        @Override
        public void run() {
            boolean computed;
            do {
                computed = false;
                // compute can happen only in 1 thread but no reason to lock others.
                if (mComputing.compareAndSet(false, true)) {
                    // as long as it is invalid, keep computing.
                    try {
                        T value = null;
                        while (mInvalid.compareAndSet(true, false)) {
                            computed = true;
                            value = compute();
                        }
                        if (computed) {
                            mLiveData.postValue(value);
                        }
                    } finally {
                        // release compute lock
                        mComputing.set(false);
                    }
                }
                // check invalid after releasing compute lock to avoid the following scenario.
                // Thread A runs compute()
                // Thread A checks invalid, it is false
                // Main thread sets invalid to true
                // Thread B runs, fails to acquire compute lock and skips
                // Thread A releases compute lock
                // We've left invalid in set state. The check below recovers. } while (computed && mInvalid.get()); } }; // invalidation check always happens on the main thread @VisibleForTesting final Runnable mInvalidationRunnable = new Runnable() { @MainThread @Override public void run() { boolean isActive = mLiveData.hasActiveObservers(); if (mInvalid.compareAndSet(false, true)) { if (isActive) { // TODO if we make this class public, we should accept an executor. ArchTaskExecutor.getInstance().executeOnDiskIO(mRefreshRunnable); } } } }; } 複製代碼

代碼也是很簡單的,先看構造方法,構造方法中直接新建了LiveData,而且在生命週期onStrart後執行mRefreshRunable線程,這個線程直接給LiveData賦值,而後activity註冊的地方就能夠收到PagedList的回調了.

咱們再來看看構造PagedList的默認線程池,追蹤代碼:

@RestrictTo(RestrictTo.Scope.LIBRARY_GROUP)
public class DefaultTaskExecutor extends TaskExecutor {
    private final Object mLock = new Object();
    private ExecutorService mDiskIO = Executors.newFixedThreadPool(2);

    @Nullable
    private volatile Handler mMainHandler;

    @Override
    public void executeOnDiskIO(Runnable runnable) {
        mDiskIO.execute(runnable);
    }

    @Override
    public void postToMainThread(Runnable runnable) {
        if (mMainHandler == null) {
            synchronized (mLock) {
                if (mMainHandler == null) {
                    mMainHandler = new Handler(Looper.getMainLooper());
                }
            }
        }
        //noinspection ConstantConditions
        mMainHandler.post(runnable);
    }

    @Override
    public boolean isMainThread() {
        return Looper.getMainLooper().getThread() == Thread.currentThread();
    }
}
複製代碼

就是這個Executors.newFixedThreadPool(2)線程池了,

接下來咱們看PagedList:

public abstract class PagedListAdapter<T, VH extends RecyclerView.ViewHolder>
        extends RecyclerView.Adapter<VH> {
    private final PagedListAdapterHelper<T> mHelper;

    /**
     * Creates a PagedListAdapter with default threading and
     * {@link android.support.v7.util.ListUpdateCallback}.
     *
     * Convenience for {@link #PagedListAdapter(ListAdapterConfig)}, which uses default threading
     * behavior.
     *
     * @param diffCallback The {@link DiffCallback} instance to compare items in the list.
     */
    protected PagedListAdapter(@NonNull DiffCallback<T> diffCallback) {
        mHelper = new PagedListAdapterHelper<>(this, diffCallback);
    }

    @SuppressWarnings("unused, WeakerAccess")
    protected PagedListAdapter(@NonNull ListAdapterConfig<T> config) {
        mHelper = new PagedListAdapterHelper<>(new ListAdapterHelper.AdapterCallback(this), config);
    }

    /**
     * Set the new list to be displayed.
     * <p>
     * If a list is already being displayed, a diff will be computed on a background thread, which
     * will dispatch Adapter.notifyItem events on the main thread.
     *
     * @param pagedList The new list to be displayed.
     */
    public void setList(PagedList<T> pagedList) {
        mHelper.setList(pagedList);
    }

    @Nullable
    protected T getItem(int position) {
        return mHelper.getItem(position);
    }

    @Override
    public int getItemCount() {
        return mHelper.getItemCount();
    }

    /**
     * Returns the list currently being displayed by the Adapter.
     * <p>
     * This is not necessarily the most recent list passed to {@link #setList(PagedList)}, because a
     * diff is computed asynchronously between the new list and the current list before updating the
     * currentList value.
     *
     * @return The list currently being displayed.
     */
    @Nullable
    public PagedList<T> getCurrentList() {
        return mHelper.getCurrentList();
    }
}複製代碼

能夠看到,PagedListAdapter只是個殼,作事的是PagedListAdapterHelper.

咱們主要看PagedListAdapterHelper的這個幾個方法:

public void setList(final PagedList<T> pagedList) {
    if (pagedList != null) {
        if (mList == null) {
            mIsContiguous = pagedList.isContiguous();
        } else {
            if (pagedList.isContiguous() != mIsContiguous) {
                throw new IllegalArgumentException("AdapterHelper cannot handle both contiguous"
                        + " and non-contiguous lists.");
            }
        }
    }

    if (pagedList == mList) {
        // nothing to do
        return;
    }

    // incrementing generation means any currently-running diffs are discarded when they finish
    final int runGeneration = ++mMaxScheduledGeneration;

    if (pagedList == null) {
        mUpdateCallback.onRemoved(0, mList.size());
        mList.removeWeakCallback(mPagedListCallback);
        mList = null;
        return;
    }

    if (mList == null) {
        // fast simple first insert
        mUpdateCallback.onInserted(0, pagedList.size());
        mList = pagedList;
        pagedList.addWeakCallback(null, mPagedListCallback);
        return;
    }

    if (!mList.isImmutable()) {
        // first update scheduled on this list, so capture mPages as a snapshot, removing
        // callbacks so we don't have resolve updates against a moving target mList.removeWeakCallback(mPagedListCallback); mList = (PagedList<T>) mList.snapshot(); } final PagedList<T> oldSnapshot = mList; final List<T> newSnapshot = pagedList.snapshot(); mUpdateScheduled = true; mConfig.getBackgroundThreadExecutor().execute(new Runnable() { @Override public void run() { final DiffUtil.DiffResult result; if (mIsContiguous) { result = ContiguousDiffHelper.computeDiff( (NullPaddedList<T>) oldSnapshot, (NullPaddedList<T>) newSnapshot, mConfig.getDiffCallback(), true); } else { result = SparseDiffHelper.computeDiff( (PageArrayList<T>) oldSnapshot, (PageArrayList<T>) newSnapshot, mConfig.getDiffCallback(), true); } mConfig.getMainThreadExecutor().execute(new Runnable() { @Override public void run() { if (mMaxScheduledGeneration == runGeneration) { mUpdateScheduled = false; latchPagedList(pagedList, newSnapshot, result); } } }); } }); } private void latchPagedList( PagedList<T> newList, List<T> diffSnapshot, DiffUtil.DiffResult diffResult) { if (mIsContiguous) { ContiguousDiffHelper.dispatchDiff(mUpdateCallback, (NullPaddedList<T>) mList, (ContiguousPagedList<T>) newList, diffResult); } else { SparseDiffHelper.dispatchDiff(mUpdateCallback, diffResult); } mList = newList; newList.addWeakCallback((PagedList<T>) diffSnapshot, mPagedListCallback); }複製代碼

這個理解成給adapter設置集合,理論上設置一次,這裏對於屢次設置集合作了刷新的比較處理。這裏仍是用到了RecylerView的 DifffUtil工具.

固然這個庫的主要功能是在未滑倒底部時候就進行數據加載,讓用戶無感知加載,這個處理方法就在getItem(int index)裏:

@SuppressWarnings("WeakerAccess")
@Nullable
public T getItem(int index) {
    if (mList == null) {
        throw new IndexOutOfBoundsException("Item count is zero, getItem() call is invalid");
    }

    mList.loadAround(index);
    return mList.get(index);
}複製代碼

recyclerView滑動加載到第幾個數據時候就會調用adapter的getItem方法,經過判斷當前加載的index位置,還有用戶設置的預加載位置,從而進行提早加載數據。這裏調用的是PagedList的loadAround方法,如今咱們去找這個方法的實如今哪:

ContiguousPageList:

@Override
public void loadAround(int index) {
    mLastLoad = index + mPositionOffset;

    int prependItems = mConfig.mPrefetchDistance - (index - mLeadingNullCount);
    int appendItems = index + mConfig.mPrefetchDistance - (mLeadingNullCount + mList.size());

    mPrependItemsRequested = Math.max(prependItems, mPrependItemsRequested);
    if (mPrependItemsRequested > 0) {
        schedulePrepend();
    }

    mAppendItemsRequested = Math.max(appendItems, mAppendItemsRequested);
    if (mAppendItemsRequested > 0) {
        scheduleAppend();
    }
}

@MainThread
private void schedulePrepend() {
    if (mPrependWorkerRunning) {
        return;
    }
    mPrependWorkerRunning = true;

    final int position = mLeadingNullCount + mPositionOffset;
    final T item = mList.get(0);
    mBackgroundThreadExecutor.execute(new Runnable() {
        @Override
        public void run() {
            if (mDetached.get()) {
                return;
            }

            final List<T> data = mDataSource.loadBefore(position, item, mConfig.mPageSize);
            if (data != null) {
                mMainThreadExecutor.execute(new Runnable() {
                    @Override
                    public void run() {
                        if (mDetached.get()) {
                            return;
                        }
                        prependImpl(data);
                    }
                });
            } else {
                detach();
            }
        }
    });
}

@MainThread
private void prependImpl(List<T> before) {
    final int count = before.size();
    if (count == 0) {
        // Nothing returned from source, stop loading in this direction
        return;
    }

    Collections.reverse(before);
    mList.addAll(0, before);

    final int changedCount = Math.min(mLeadingNullCount, count);
    final int addedCount = count - changedCount;

    if (changedCount != 0) {
        mLeadingNullCount -= changedCount;
    }
    mPositionOffset -= addedCount;
    mNumberPrepended += count;


    // only try to post more work after fully prepended (with offsets / null counts updated)
    mPrependItemsRequested -= count;
    mPrependWorkerRunning = false;
    if (mPrependItemsRequested > 0) {
        // not done prepending, keep going
        schedulePrepend();
    }

    // finally dispatch callbacks, after prepend may have already been scheduled
    for (WeakReference<Callback> weakRef : mCallbacks) {
        Callback callback = weakRef.get();
        if (callback != null) {
            if (changedCount != 0) {
                callback.onChanged(mLeadingNullCount, changedCount);
            }
            if (addedCount != 0) {
                callback.onInserted(0, addedCount);
            }
        }
    }
}

複製代碼

因爲咱們傳入的是TiledDataSource,因此這些mDataSource的loadBefore和loadAfter等最終都調用了TiledDataSource的loadRange方法。

到這裏爲止,好像總體流程已經分析完了,總體流程就看這張圖吧:


首先Recyclerview設置PagedListAdater,PagedListAdapter設置對應的PagedList,每次adapter getItme就讓PagedList知道用戶已經滑到第幾個item,PagedList計算這些數量以及設置的各類條件,條件達成就通知DataSource,讓其返回數據,數據返回成功,通知PagedListAdapter,讓其使用進行高效刷新.

目前該庫仍是測試階段,裏面還有方法回調都未被用到,本文只是簡單分析下源碼流程,不過也貌似打開了一些新的思路.

因爲本人水平也不高,文中也有很多理解錯誤之處,也但願能各位指教,一塊兒學習,一塊兒進步.

相關文章
相關標籤/搜索