分拆數據集python
def load_data(filename):
"""read data from data file."""
with open(filename, 'rb') as f:
data = pickle.load(f, encoding='bytes')
return data[b'data'], data[b'labels']
# trensorflow.DataSet
class CifarData:
def __init__(self, filenames, need_shuffle):
all_data = []
all_labels = []
for filename in filenames:
data,labels = load_data(filename)
for item,label in zip(data,labels):
if label in [0,1]:
all_data.append(item)
all_labels.append(label)
self._data = np.vstack(all_data)
# 歸一化,將0-255的數歸一成0-1直接的數
self._data = self._data / 127.5 - 1
self._labels = np.hstack(all_labels)
self._num_examples = self._data.shape[0]
self._need_shuffle = need_shuffle
self._indicator = 0
if self._need_shuffle:
self._shuffle_data()
def _shuffle_data(self):
# 混排 [0,1,2,3,4,5] -> [2,1,4,0,3,5]
p = np.random.permutation(self._num_examples)
self._data = self._data[p]
self._labels = self._labels[p]
def next_batch(self, batch_size):
"""return batch_size examples as a batch."""
end_indicator = self._indicator + batch_size
if end_indicator > self._num_examples:
if self._need_shuffle:
self._shuffle_data()
self._indicator = 0
end_indicator = batch_size
else:
raise Exception("have no more examples")
if end_indicator > self._num_examples:
raise Exception("batch size is lager then all examples")
batch_data = self._data[self._indicator:end_indicator]
batch_labels = self._labels[self._indicator:end_indicator]
self._indicator = end_indicator
return batch_data, batch_labels
train_filename = [os.path.join(CIFAR_DIR,'data_batch_%d' % i) for i in range(1,6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
train_data = CifarData(train_filename, True)
test_data = CifarData(test_filenames, False)
batch_data,batch_labels = train_data.next_batch(10)
複製代碼
測試算法準確率算法
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 100000
test_steps = 100
with tf.Session() as sess:
sess.run(init)
for i in range(train_steps):
batch_data, batch_labels = train_data.next_batch(batch_size)
loss_val, acc_val, _ = sess.run(
[loss, accuracy, train_op],
feed_dict={
x: batch_data,
y: batch_labels})
if (i+1) % 500 == 0:
print ('[Train] Step: %d, loss: %4.5f, acc: %4.5f' \
% (i+1, loss_val, acc_val))
if (i+1) % 5000 == 0:
test_data = CifarData(test_filenames, False)
all_test_acc_val = []
for j in range(test_steps):
test_batch_data, test_batch_labels \
= test_data.next_batch(batch_size)
test_acc_val = sess.run(
[accuracy],
feed_dict = {
x: test_batch_data,
y: test_batch_labels
})
all_test_acc_val.append(test_acc_val)
test_acc = np.mean(all_test_acc_val)
print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))
複製代碼