c a a b c
-轉志Integer算法
99 32 97 32 97 32 10 98 32 99
package com.opensourceteams.module.bigdata.flink.example.dataset.worldcount import com.opensourceteams.module.bigdata.flink.common.ConfigurationUtil import org.apache.flink.api.scala.ExecutionEnvironment /** * 批處理,DataSet WordCount分析 */ object WordCountRun { def main(args: Array[String]): Unit = { //調試設置超時問題 val env : ExecutionEnvironment= ExecutionEnvironment.createLocalEnvironment(ConfigurationUtil.getConfiguration(true)) env.setParallelism(2) val dataSet = env.readTextFile("file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt") import org.apache.flink.streaming.api.scala._ val result = dataSet.flatMap(x => x.split(" ")).map((_,1)).groupBy(0).sum(1) result.print() } }
預拆分數據,之因此叫作預,就不是實際的,實際讀取時,會考慮更多因素,會有必定變化,下面有詳細說明apache
把文件按並行度拆分紅FileInputSplit的個數,固然並非徹底有幾個並行度就生成幾個FileInputSplit對象,根據具體算法獲得,可是FileInputSplit個數,必定是(並行度個數,或者並行度個數+1),由於計算FileInputSplit個數時,參照物是文件大小 / 並行度 ,若是沒有餘數,恰好整除,那麼FileInputSplit個數必定是並行度,若是有餘數,FileInputSplit個數就爲是(並行度個數,或者並行度個數+1)api
本示例拆分的結果緩存
[0] file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt:0+5 [1] file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt:5+4
JobMaster在實例化時,構建ExecutionGraph,會調用 ExecutionGraphBuilder.buildGraph(jobGraph)app
把jobGraph是由JobVertex組成,調用executionGraph.attachJobGraph(sortedTopology) 把JobGraph轉成ExecutionGraph,ExecutionGraph由ExecutionJobVertex組成,即把JobVertex轉成ExecutionJobVertexasync
executionGraph.attachJobGraph(sortedTopology);
sortedTopology = {ArrayList@5177} size = 3
0 = {InputFormatVertex@5459} "CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (org.apache.flink.runtime.operators.DataSourceTask)" 1 = {JobVertex@5460} "Reduce (SUM(1)) (org.apache.flink.runtime.operators.BatchTask)" 2 = {OutputFormatVertex@5461} "DataSink (collect()) (org.apache.flink.runtime.operators.DataSinkTask)" ```maven
/** * Builds the ExecutionGraph from the JobGraph. * If a prior execution graph exists, the JobGraph will be attached. If no prior execution * graph exists, then the JobGraph will become attach to a new empty execution graph. */ @Deprecated public static ExecutionGraph buildGraph( @Nullable ExecutionGraph prior, JobGraph jobGraph, Configuration jobManagerConfig, ScheduledExecutorService futureExecutor, Executor ioExecutor, SlotProvider slotProvider, ClassLoader classLoader, CheckpointRecoveryFactory recoveryFactory, Time rpcTimeout, RestartStrategy restartStrategy, MetricGroup metrics, int parallelismForAutoMax, BlobWriter blobWriter, Time allocationTimeout, Logger log) throws JobExecutionException, JobException { checkNotNull(jobGraph, "job graph cannot be null"); final String jobName = jobGraph.getName(); final JobID jobId = jobGraph.getJobID(); final FailoverStrategy.Factory failoverStrategy = FailoverStrategyLoader.loadFailoverStrategy(jobManagerConfig, log); final JobInformation jobInformation = new JobInformation( jobId, jobName, jobGraph.getSerializedExecutionConfig(), jobGraph.getJobConfiguration(), jobGraph.getUserJarBlobKeys(), jobGraph.getClasspaths()); // create a new execution graph, if none exists so far final ExecutionGraph executionGraph; try { executionGraph = (prior != null) ? prior : new ExecutionGraph( jobInformation, futureExecutor, ioExecutor, rpcTimeout, restartStrategy, failoverStrategy, slotProvider, classLoader, blobWriter, allocationTimeout); } catch (IOException e) { throw new JobException("Could not create the ExecutionGraph.", e); } // set the basic properties executionGraph.setScheduleMode(jobGraph.getScheduleMode()); executionGraph.setQueuedSchedulingAllowed(jobGraph.getAllowQueuedScheduling()); try { executionGraph.setJsonPlan(JsonPlanGenerator.generatePlan(jobGraph)); } catch (Throwable t) { log.warn("Cannot create JSON plan for job", t); // give the graph an empty plan executionGraph.setJsonPlan("{}"); } // initialize the vertices that have a master initialization hook // file output formats create directories here, input formats create splits final long initMasterStart = System.nanoTime(); log.info("Running initialization on master for job {} ({}).", jobName, jobId); for (JobVertex vertex : jobGraph.getVertices()) { String executableClass = vertex.getInvokableClassName(); if (executableClass == null || executableClass.isEmpty()) { throw new JobSubmissionException(jobId, "The vertex " + vertex.getID() + " (" + vertex.getName() + ") has no invokable class."); } if (vertex.getParallelism() == ExecutionConfig.PARALLELISM_AUTO_MAX) { if (parallelismForAutoMax < 0) { throw new JobSubmissionException( jobId, PARALLELISM_AUTO_MAX_ERROR_MESSAGE); } else { vertex.setParallelism(parallelismForAutoMax); } } try { vertex.initializeOnMaster(classLoader); } catch (Throwable t) { throw new JobExecutionException(jobId, "Cannot initialize task '" + vertex.getName() + "': " + t.getMessage(), t); } } log.info("Successfully ran initialization on master in {} ms.", (System.nanoTime() - initMasterStart) / 1_000_000); // topologically sort the job vertices and attach the graph to the existing one List<JobVertex> sortedTopology = jobGraph.getVerticesSortedTopologicallyFromSources(); if (log.isDebugEnabled()) { log.debug("Adding {} vertices from job graph {} ({}).", sortedTopology.size(), jobName, jobId); } executionGraph.attachJobGraph(sortedTopology); if (log.isDebugEnabled()) { log.debug("Successfully created execution graph from job graph {} ({}).", jobName, jobId); } // configure the state checkpointing JobCheckpointingSettings snapshotSettings = jobGraph.getCheckpointingSettings(); if (snapshotSettings != null) { List<ExecutionJobVertex> triggerVertices = idToVertex(snapshotSettings.getVerticesToTrigger(), executionGraph); List<ExecutionJobVertex> ackVertices = idToVertex(snapshotSettings.getVerticesToAcknowledge(), executionGraph); List<ExecutionJobVertex> confirmVertices = idToVertex(snapshotSettings.getVerticesToConfirm(), executionGraph); CompletedCheckpointStore completedCheckpoints; CheckpointIDCounter checkpointIdCounter; try { int maxNumberOfCheckpointsToRetain = jobManagerConfig.getInteger( CheckpointingOptions.MAX_RETAINED_CHECKPOINTS); if (maxNumberOfCheckpointsToRetain <= 0) { // warning and use 1 as the default value if the setting in // state.checkpoints.max-retained-checkpoints is not greater than 0. log.warn("The setting for '{} : {}' is invalid. Using default value of {}", CheckpointingOptions.MAX_RETAINED_CHECKPOINTS.key(), maxNumberOfCheckpointsToRetain, CheckpointingOptions.MAX_RETAINED_CHECKPOINTS.defaultValue()); maxNumberOfCheckpointsToRetain = CheckpointingOptions.MAX_RETAINED_CHECKPOINTS.defaultValue(); } completedCheckpoints = recoveryFactory.createCheckpointStore(jobId, maxNumberOfCheckpointsToRetain, classLoader); checkpointIdCounter = recoveryFactory.createCheckpointIDCounter(jobId); } catch (Exception e) { throw new JobExecutionException(jobId, "Failed to initialize high-availability checkpoint handler", e); } // Maximum number of remembered checkpoints int historySize = jobManagerConfig.getInteger(WebOptions.CHECKPOINTS_HISTORY_SIZE); CheckpointStatsTracker checkpointStatsTracker = new CheckpointStatsTracker( historySize, ackVertices, snapshotSettings.getCheckpointCoordinatorConfiguration(), metrics); // The default directory for externalized checkpoints String externalizedCheckpointsDir = jobManagerConfig.getString(CheckpointingOptions.CHECKPOINTS_DIRECTORY); // load the state backend from the application settings final StateBackend applicationConfiguredBackend; final SerializedValue<StateBackend> serializedAppConfigured = snapshotSettings.getDefaultStateBackend(); if (serializedAppConfigured == null) { applicationConfiguredBackend = null; } else { try { applicationConfiguredBackend = serializedAppConfigured.deserializeValue(classLoader); } catch (IOException | ClassNotFoundException e) { throw new JobExecutionException(jobId, "Could not deserialize application-defined state backend.", e); } } final StateBackend rootBackend; try { rootBackend = StateBackendLoader.fromApplicationOrConfigOrDefault( applicationConfiguredBackend, jobManagerConfig, classLoader, log); } catch (IllegalConfigurationException | IOException | DynamicCodeLoadingException e) { throw new JobExecutionException(jobId, "Could not instantiate configured state backend", e); } // instantiate the user-defined checkpoint hooks final SerializedValue<MasterTriggerRestoreHook.Factory[]> serializedHooks = snapshotSettings.getMasterHooks(); final List<MasterTriggerRestoreHook<?>> hooks; if (serializedHooks == null) { hooks = Collections.emptyList(); } else { final MasterTriggerRestoreHook.Factory[] hookFactories; try { hookFactories = serializedHooks.deserializeValue(classLoader); } catch (IOException | ClassNotFoundException e) { throw new JobExecutionException(jobId, "Could not instantiate user-defined checkpoint hooks", e); } final Thread thread = Thread.currentThread(); final ClassLoader originalClassLoader = thread.getContextClassLoader(); thread.setContextClassLoader(classLoader); try { hooks = new ArrayList<>(hookFactories.length); for (MasterTriggerRestoreHook.Factory factory : hookFactories) { hooks.add(MasterHooks.wrapHook(factory.create(), classLoader)); } } finally { thread.setContextClassLoader(originalClassLoader); } } final CheckpointCoordinatorConfiguration chkConfig = snapshotSettings.getCheckpointCoordinatorConfiguration(); executionGraph.enableCheckpointing( chkConfig.getCheckpointInterval(), chkConfig.getCheckpointTimeout(), chkConfig.getMinPauseBetweenCheckpoints(), chkConfig.getMaxConcurrentCheckpoints(), chkConfig.getCheckpointRetentionPolicy(), triggerVertices, ackVertices, confirmVertices, hooks, checkpointIdCounter, completedCheckpoints, rootBackend, checkpointStatsTracker); } // create all the metrics for the Execution Graph metrics.gauge(RestartTimeGauge.METRIC_NAME, new RestartTimeGauge(executionGraph)); metrics.gauge(DownTimeGauge.METRIC_NAME, new DownTimeGauge(executionGraph)); metrics.gauge(UpTimeGauge.METRIC_NAME, new UpTimeGauge(executionGraph)); metrics.gauge(NumberOfFullRestartsGauge.METRIC_NAME, new NumberOfFullRestartsGauge(executionGraph)); executionGraph.getFailoverStrategy().registerMetrics(metrics); return executionGraph; }
把JobVertex 轉化爲ExecutionJobVertex,調用new ExecutionJobVertex(),ExecutionJobVertex中存了inputSplits,因此會根據並行並來計算inputSplits的個數
// create the execution job vertex and attach it to the graph ExecutionJobVertex ejv = new ExecutionJobVertex( this, jobVertex, 1, rpcTimeout, globalModVersion, createTimestamp);
// -------------------------------------------------------------------------------------------- // Actions // -------------------------------------------------------------------------------------------- public void attachJobGraph(List<JobVertex> topologiallySorted) throws JobException { LOG.debug("Attaching {} topologically sorted vertices to existing job graph with {} " + "vertices and {} intermediate results.", topologiallySorted.size(), tasks.size(), intermediateResults.size()); final ArrayList<ExecutionJobVertex> newExecJobVertices = new ArrayList<>(topologiallySorted.size()); final long createTimestamp = System.currentTimeMillis(); for (JobVertex jobVertex : topologiallySorted) { if (jobVertex.isInputVertex() && !jobVertex.isStoppable()) { this.isStoppable = false; } // create the execution job vertex and attach it to the graph ExecutionJobVertex ejv = new ExecutionJobVertex( this, jobVertex, 1, rpcTimeout, globalModVersion, createTimestamp); ejv.connectToPredecessors(this.intermediateResults); ExecutionJobVertex previousTask = this.tasks.putIfAbsent(jobVertex.getID(), ejv); if (previousTask != null) { throw new JobException(String.format("Encountered two job vertices with ID %s : previous=[%s] / new=[%s]", jobVertex.getID(), ejv, previousTask)); } for (IntermediateResult res : ejv.getProducedDataSets()) { IntermediateResult previousDataSet = this.intermediateResults.putIfAbsent(res.getId(), res); if (previousDataSet != null) { throw new JobException(String.format("Encountered two intermediate data set with ID %s : previous=[%s] / new=[%s]", res.getId(), res, previousDataSet)); } } this.verticesInCreationOrder.add(ejv); this.numVerticesTotal += ejv.getParallelism(); newExecJobVertices.add(ejv); } terminationFuture = new CompletableFuture<>(); failoverStrategy.notifyNewVertices(newExecJobVertices); }
調用FileInputFormat.createInputSplits(並行度)再實際處理
@SuppressWarnings("unchecked") InputSplitSource<InputSplit> splitSource = (InputSplitSource<InputSplit>) jobVertex.getInputSplitSource(); if (splitSource != null) { Thread currentThread = Thread.currentThread(); ClassLoader oldContextClassLoader = currentThread.getContextClassLoader(); currentThread.setContextClassLoader(graph.getUserClassLoader()); try { inputSplits = splitSource.createInputSplits(numTaskVertices); if (inputSplits != null) { splitAssigner = splitSource.getInputSplitAssigner(inputSplits); } } finally { currentThread.setContextClassLoader(oldContextClassLoader); } }
public ExecutionJobVertex( ExecutionGraph graph, JobVertex jobVertex, int defaultParallelism, Time timeout, long initialGlobalModVersion, long createTimestamp) throws JobException { if (graph == null || jobVertex == null) { throw new NullPointerException(); } this.graph = graph; this.jobVertex = jobVertex; int vertexParallelism = jobVertex.getParallelism(); int numTaskVertices = vertexParallelism > 0 ? vertexParallelism : defaultParallelism; final int configuredMaxParallelism = jobVertex.getMaxParallelism(); this.maxParallelismConfigured = (VALUE_NOT_SET != configuredMaxParallelism); // if no max parallelism was configured by the user, we calculate and set a default setMaxParallelismInternal(maxParallelismConfigured ? configuredMaxParallelism : KeyGroupRangeAssignment.computeDefaultMaxParallelism(numTaskVertices)); // verify that our parallelism is not higher than the maximum parallelism if (numTaskVertices > maxParallelism) { throw new JobException( String.format("Vertex %s's parallelism (%s) is higher than the max parallelism (%s). Please lower the parallelism or increase the max parallelism.", jobVertex.getName(), numTaskVertices, maxParallelism)); } this.parallelism = numTaskVertices; this.serializedTaskInformation = null; this.taskVertices = new ExecutionVertex[numTaskVertices]; this.operatorIDs = Collections.unmodifiableList(jobVertex.getOperatorIDs()); this.userDefinedOperatorIds = Collections.unmodifiableList(jobVertex.getUserDefinedOperatorIDs()); this.inputs = new ArrayList<>(jobVertex.getInputs().size()); // take the sharing group this.slotSharingGroup = jobVertex.getSlotSharingGroup(); this.coLocationGroup = jobVertex.getCoLocationGroup(); // setup the coLocation group if (coLocationGroup != null && slotSharingGroup == null) { throw new JobException("Vertex uses a co-location constraint without using slot sharing"); } // create the intermediate results this.producedDataSets = new IntermediateResult[jobVertex.getNumberOfProducedIntermediateDataSets()]; for (int i = 0; i < jobVertex.getProducedDataSets().size(); i++) { final IntermediateDataSet result = jobVertex.getProducedDataSets().get(i); this.producedDataSets[i] = new IntermediateResult( result.getId(), this, numTaskVertices, result.getResultType()); } Configuration jobConfiguration = graph.getJobConfiguration(); int maxPriorAttemptsHistoryLength = jobConfiguration != null ? jobConfiguration.getInteger(JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE) : JobManagerOptions.MAX_ATTEMPTS_HISTORY_SIZE.defaultValue(); // create all task vertices for (int i = 0; i < numTaskVertices; i++) { ExecutionVertex vertex = new ExecutionVertex( this, i, producedDataSets, timeout, initialGlobalModVersion, createTimestamp, maxPriorAttemptsHistoryLength); this.taskVertices[i] = vertex; } // sanity check for the double referencing between intermediate result partitions and execution vertices for (IntermediateResult ir : this.producedDataSets) { if (ir.getNumberOfAssignedPartitions() != parallelism) { throw new RuntimeException("The intermediate result's partitions were not correctly assigned."); } } // set up the input splits, if the vertex has any try { @SuppressWarnings("unchecked") InputSplitSource<InputSplit> splitSource = (InputSplitSource<InputSplit>) jobVertex.getInputSplitSource(); if (splitSource != null) { Thread currentThread = Thread.currentThread(); ClassLoader oldContextClassLoader = currentThread.getContextClassLoader(); currentThread.setContextClassLoader(graph.getUserClassLoader()); try { inputSplits = splitSource.createInputSplits(numTaskVertices); if (inputSplits != null) { splitAssigner = splitSource.getInputSplitAssigner(inputSplits); } } finally { currentThread.setContextClassLoader(oldContextClassLoader); } } else { inputSplits = null; } } catch (Throwable t) { throw new JobException("Creating the input splits caused an error: " + t.getMessage(), t); } }
真正的方法在這裏,根據並行度,把文件拆分紅FileInputSplit[]
首先遍歷路徑是文件或目錄,計算出全部文件放到List<FileStatus> files = new ArrayList<>()中存儲,計算出全部文件總大小totalLength,計算文件切片,固然是全部文件總大小來計算
// get all the files that are involved in the splits List<FileStatus> files = new ArrayList<>(); long totalLength = 0; for (Path path : getFilePaths()) { final FileSystem fs = path.getFileSystem(); final FileStatus pathFile = fs.getFileStatus(path); if (pathFile.isDir()) { totalLength += addFilesInDir(path, files, true); } else { testForUnsplittable(pathFile); files.add(pathFile); totalLength += pathFile.getLen(); } }
每一個切片最大長度計算,totalLength = 9 爲文件總長度,minNumSplits = 2 爲並行度,也就是9不能整除並行度2,說明有餘數,若是把餘數的數據單獨在分配一個切片,有可能這一個切片的數據量不多,就浪費資源了,這裏的作法是,餘數的最大值,也就是每一個切片+1,就把這裏多的餘數分配到前面的每一個切片中,也就是每一個切片的最大值爲 9 / 2 + 1 = 5
final long maxSplitSize = totalLength / minNumSplits + (totalLength % minNumSplits == 0 ? 0 : 1); ```
計算實際切片的大小,blockSize 此處爲文件大小,maxSplitSize 通常都小於blockSize,因此最後取的是切片的最大長度maxSplitSize
final long splitSize = Math.max(minSplitSize, Math.min(maxSplitSize, blockSize));
實際計算時,當計算最後一個切片時,若是剩下的數據大小小於 切片大小的1.1倍,就放在一個切片中,不在切分了,直接把剩下的數據放到最後一個切片中,由於若是切後後,致使最後一切片數據量很小,浪費資源
final long maxBytesForLastSplit = (long) (splitSize * MAX_SPLIT_SIZE_DISCREPANCY);
切片拆分的計算方法,初使值 bytesUnassigned = len(文件總數據長度),每分一次bytesUnassigned會減去當前切片的大小,也就是bytesUnassigned每次都是還剩下總的數據大小,當bytesUnassigned > maxBytesForLastSplit 就一直循環拆分切片,切片的長度爲splitSize(切片大小) = 5, 開始位置從0開始,之後每一個切片開始位置都須要加上以前全部切片大小 position += splitSize ;
while (bytesUnassigned > maxBytesForLastSplit) { // get the block containing the majority of the data blockIndex = getBlockIndexForPosition(blocks, position, halfSplit, blockIndex); // create a new split FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), position, splitSize, blocks[blockIndex].getHosts()); inputSplits.add(fis); // adjust the positions position += splitSize; bytesUnassigned -= splitSize; }
因爲while循環拆分切片是有條件的,bytesUnassigned > maxBytesForLastSplit,那若是bytesUnassigned <= maxBytesForLastSplit,就須要把剩下的數據,都放到最後一個切片中
// assign the last split if (bytesUnassigned > 0) { blockIndex = getBlockIndexForPosition(blocks, position, halfSplit, blockIndex); final FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), position, bytesUnassigned, blocks[blockIndex].getHosts()); inputSplits.add(fis); }
/** * Computes the input splits for the file. By default, one file block is one split. If more splits * are requested than blocks are available, then a split may be a fraction of a block and splits may cross * block boundaries. * * @param minNumSplits The minimum desired number of file splits. * @return The computed file splits. * * @see org.apache.flink.api.common.io.InputFormat#createInputSplits(int) */ @Override public FileInputSplit[] createInputSplits(int minNumSplits) throws IOException { if (minNumSplits < 1) { throw new IllegalArgumentException("Number of input splits has to be at least 1."); } // take the desired number of splits into account minNumSplits = Math.max(minNumSplits, this.numSplits); final List<FileInputSplit> inputSplits = new ArrayList<FileInputSplit>(minNumSplits); // get all the files that are involved in the splits List<FileStatus> files = new ArrayList<>(); long totalLength = 0; for (Path path : getFilePaths()) { final FileSystem fs = path.getFileSystem(); final FileStatus pathFile = fs.getFileStatus(path); if (pathFile.isDir()) { totalLength += addFilesInDir(path, files, true); } else { testForUnsplittable(pathFile); files.add(pathFile); totalLength += pathFile.getLen(); } } // returns if unsplittable if (unsplittable) { int splitNum = 0; for (final FileStatus file : files) { final FileSystem fs = file.getPath().getFileSystem(); final BlockLocation[] blocks = fs.getFileBlockLocations(file, 0, file.getLen()); Set<String> hosts = new HashSet<String>(); for(BlockLocation block : blocks) { hosts.addAll(Arrays.asList(block.getHosts())); } long len = file.getLen(); if(testForUnsplittable(file)) { len = READ_WHOLE_SPLIT_FLAG; } FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), 0, len, hosts.toArray(new String[hosts.size()])); inputSplits.add(fis); } return inputSplits.toArray(new FileInputSplit[inputSplits.size()]); } final long maxSplitSize = totalLength / minNumSplits + (totalLength % minNumSplits == 0 ? 0 : 1); // now that we have the files, generate the splits int splitNum = 0; for (final FileStatus file : files) { final FileSystem fs = file.getPath().getFileSystem(); final long len = file.getLen(); final long blockSize = file.getBlockSize(); final long minSplitSize; if (this.minSplitSize <= blockSize) { minSplitSize = this.minSplitSize; } else { if (LOG.isWarnEnabled()) { LOG.warn("Minimal split size of " + this.minSplitSize + " is larger than the block size of " + blockSize + ". Decreasing minimal split size to block size."); } minSplitSize = blockSize; } final long splitSize = Math.max(minSplitSize, Math.min(maxSplitSize, blockSize)); final long halfSplit = splitSize >>> 1; final long maxBytesForLastSplit = (long) (splitSize * MAX_SPLIT_SIZE_DISCREPANCY); if (len > 0) { // get the block locations and make sure they are in order with respect to their offset final BlockLocation[] blocks = fs.getFileBlockLocations(file, 0, len); Arrays.sort(blocks); long bytesUnassigned = len; long position = 0; int blockIndex = 0; while (bytesUnassigned > maxBytesForLastSplit) { // get the block containing the majority of the data blockIndex = getBlockIndexForPosition(blocks, position, halfSplit, blockIndex); // create a new split FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), position, splitSize, blocks[blockIndex].getHosts()); inputSplits.add(fis); // adjust the positions position += splitSize; bytesUnassigned -= splitSize; } // assign the last split if (bytesUnassigned > 0) { blockIndex = getBlockIndexForPosition(blocks, position, halfSplit, blockIndex); final FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), position, bytesUnassigned, blocks[blockIndex].getHosts()); inputSplits.add(fis); } } else { // special case with a file of zero bytes size final BlockLocation[] blocks = fs.getFileBlockLocations(file, 0, 0); String[] hosts; if (blocks.length > 0) { hosts = blocks[0].getHosts(); } else { hosts = new String[0]; } final FileInputSplit fis = new FileInputSplit(splitNum++, file.getPath(), 0, 0, hosts); inputSplits.add(fis); } } return inputSplits.toArray(new FileInputSplit[inputSplits.size()]); }
Source 的操做鏈(ChainedFlatMapDriver,ChainedMapDriver,SynchronousChainedCombineDriver) 即 FlatMap -> Map -> Combine (SUM(1)),也就是source讀到的數據,都須要通過鏈上的算子操做
// start all chained tasks BatchTask.openChainedTasks(this.chainedTasks, this); ```
``` this.chainedTasks = {ArrayList@5459} size = 3
0 = {ChainedFlatMapDriver@5458} 1 = {ChainedMapDriver@5505} 2 = {SynchronousChainedCombineDriver@5506} ```
隨機讀到一個切片,給當前DataSourceTask使用,由於在Source讀取數據時是不按key分區,也就不分誰處理,有任務來處理,就給一個切片處理就行,每給出一個從總的切片中移除
final InputSplit split = splitIterator.next();
當前切片信息
LOG.debug(getLogString("Opening input split " + split.toString())); 13:04:02,082 DEBUG [CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (2/2)] org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:165) - Opening input split [1] file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt:5+4: CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (2/2)
對當前切片進行處理 ,調用 DelimitedInputFormat.open(),//open還沒開始真正的讀數據,只是定位,把第一個換行符,分到前一個分片,本身從第二個換行符開始讀取數據
format.open(split);
@Override public void invoke() throws Exception { // -------------------------------------------------------------------- // Initialize // -------------------------------------------------------------------- initInputFormat(); LOG.debug(getLogString("Start registering input and output")); try { initOutputs(getUserCodeClassLoader()); } catch (Exception ex) { throw new RuntimeException("The initialization of the DataSource's outputs caused an error: " + ex.getMessage(), ex); } LOG.debug(getLogString("Finished registering input and output")); // -------------------------------------------------------------------- // Invoke // -------------------------------------------------------------------- LOG.debug(getLogString("Starting data source operator")); RuntimeContext ctx = createRuntimeContext(); final Counter numRecordsOut; { Counter tmpNumRecordsOut; try { OperatorIOMetricGroup ioMetricGroup = ((OperatorMetricGroup) ctx.getMetricGroup()).getIOMetricGroup(); ioMetricGroup.reuseInputMetricsForTask(); if (this.config.getNumberOfChainedStubs() == 0) { ioMetricGroup.reuseOutputMetricsForTask(); } tmpNumRecordsOut = ioMetricGroup.getNumRecordsOutCounter(); } catch (Exception e) { LOG.warn("An exception occurred during the metrics setup.", e); tmpNumRecordsOut = new SimpleCounter(); } numRecordsOut = tmpNumRecordsOut; } Counter completedSplitsCounter = ctx.getMetricGroup().counter("numSplitsProcessed"); if (RichInputFormat.class.isAssignableFrom(this.format.getClass())) { ((RichInputFormat) this.format).setRuntimeContext(ctx); LOG.debug(getLogString("Rich Source detected. Initializing runtime context.")); ((RichInputFormat) this.format).openInputFormat(); LOG.debug(getLogString("Rich Source detected. Opening the InputFormat.")); } ExecutionConfig executionConfig = getExecutionConfig(); boolean objectReuseEnabled = executionConfig.isObjectReuseEnabled(); LOG.debug("DataSourceTask object reuse: " + (objectReuseEnabled ? "ENABLED" : "DISABLED") + "."); final TypeSerializer<OT> serializer = this.serializerFactory.getSerializer(); try { // start all chained tasks BatchTask.openChainedTasks(this.chainedTasks, this); // get input splits to read final Iterator<InputSplit> splitIterator = getInputSplits(); // for each assigned input split while (!this.taskCanceled && splitIterator.hasNext()) { // get start and end final InputSplit split = splitIterator.next(); LOG.debug(getLogString("Opening input split " + split.toString())); final InputFormat<OT, InputSplit> format = this.format; // open input format format.open(split); LOG.debug(getLogString("Starting to read input from split " + split.toString())); try { final Collector<OT> output = new CountingCollector<>(this.output, numRecordsOut); if (objectReuseEnabled) { OT reuse = serializer.createInstance(); // as long as there is data to read while (!this.taskCanceled && !format.reachedEnd()) { OT returned; if ((returned = format.nextRecord(reuse)) != null) { output.collect(returned); } } } else { // as long as there is data to read while (!this.taskCanceled && !format.reachedEnd()) { OT returned; if ((returned = format.nextRecord(serializer.createInstance())) != null) { output.collect(returned); } } } if (LOG.isDebugEnabled() && !this.taskCanceled) { LOG.debug(getLogString("Closing input split " + split.toString())); } } finally { // close. We close here such that a regular close throwing an exception marks a task as failed. format.close(); } completedSplitsCounter.inc(); } // end for all input splits // close the collector. if it is a chaining task collector, it will close its chained tasks this.output.close(); // close all chained tasks letting them report failure BatchTask.closeChainedTasks(this.chainedTasks, this); } catch (Exception ex) { // close the input, but do not report any exceptions, since we already have another root cause try { this.format.close(); } catch (Throwable ignored) {} BatchTask.cancelChainedTasks(this.chainedTasks); ex = ExceptionInChainedStubException.exceptionUnwrap(ex); if (ex instanceof CancelTaskException) { // forward canceling exception throw ex; } else if (!this.taskCanceled) { // drop exception, if the task was canceled BatchTask.logAndThrowException(ex, this); } } finally { BatchTask.clearWriters(eventualOutputs); // -------------------------------------------------------------------- // Closing // -------------------------------------------------------------------- if (this.format != null && RichInputFormat.class.isAssignableFrom(this.format.getClass())) { ((RichInputFormat) this.format).closeInputFormat(); LOG.debug(getLogString("Rich Source detected. Closing the InputFormat.")); } } if (!this.taskCanceled) { LOG.debug(getLogString("Finished data source operator")); } else { LOG.debug(getLogString("Data source operator cancelled")); } }
/** * Opens the given input split. This method opens the input stream to the specified file, allocates read buffers * and positions the stream at the correct position, making sure that any partial record at the beginning is skipped. * * @param split The input split to open. * * @see org.apache.flink.api.common.io.FileInputFormat#open(org.apache.flink.core.fs.FileInputSplit) */ @Override public void open(FileInputSplit split) throws IOException { super.open(split); initBuffers(); this.offset = splitStart; if (this.splitStart != 0) { this.stream.seek(offset); readLine(); // if the first partial record already pushes the stream over // the limit of our split, then no record starts within this split if (this.overLimit) { this.end = true; } } else { fillBuffer(0); } }
調置當前分片
this.currentSplit = fileSplit;
調置當前分片的開始位置
this.splitStart = fileSplit.getStart();
調置當前分片的長度
this.splitLength = fileSplit.getLength();
流定位到開始位置
// get FSDataInputStream if (this.splitStart != 0) { this.stream.seek(this.splitStart); }
/** * Opens an input stream to the file defined in the input format. * The stream is positioned at the beginning of the given split. * <p> * The stream is actually opened in an asynchronous thread to make sure any interruptions to the thread * working on the input format do not reach the file system. */ @Override public void open(FileInputSplit fileSplit) throws IOException { this.currentSplit = fileSplit; this.splitStart = fileSplit.getStart(); this.splitLength = fileSplit.getLength(); if (LOG.isDebugEnabled()) { LOG.debug("Opening input split " + fileSplit.getPath() + " [" + this.splitStart + "," + this.splitLength + "]"); } // open the split in an asynchronous thread final InputSplitOpenThread isot = new InputSplitOpenThread(fileSplit, this.openTimeout); isot.start(); try { this.stream = isot.waitForCompletion(); this.stream = decorateInputStream(this.stream, fileSplit); } catch (Throwable t) { throw new IOException("Error opening the Input Split " + fileSplit.getPath() + " [" + splitStart + "," + splitLength + "]: " + t.getMessage(), t); } // get FSDataInputStream if (this.splitStart != 0) { this.stream.seek(this.splitStart); } }
默認的readBuffer大小爲1M,wrapBuffer 爲256 byte
當前切片默認值設置
this.readPos = 0; this.limit = 0; this.overLimit = false; this.end = false;
private void initBuffers() { this.bufferSize = this.bufferSize <= 0 ? DEFAULT_READ_BUFFER_SIZE : this.bufferSize; if (this.bufferSize <= this.delimiter.length) { throw new IllegalArgumentException("Buffer size must be greater than length of delimiter."); } if (this.readBuffer == null || this.readBuffer.length != this.bufferSize) { this.readBuffer = new byte[this.bufferSize]; } if (this.wrapBuffer == null || this.wrapBuffer.length < 256) { this.wrapBuffer = new byte[256]; } this.readPos = 0; this.limit = 0; this.overLimit = false; this.end = false; }
// Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; }
setResult(this.readBuffer, startPos, count);
protected final boolean readLine() throws IOException { if (this.stream == null || this.overLimit) { return false; } int countInWrapBuffer = 0; // position of matching positions in the delimiter byte array int delimPos = 0; while (true) { if (this.readPos >= this.limit) { // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes. if (!fillBuffer(delimPos)) { int countInReadBuffer = delimPos; if (countInWrapBuffer + countInReadBuffer > 0) { // we have bytes left to emit if (countInReadBuffer > 0) { // we have bytes left in the readBuffer. Move them into the wrapBuffer if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) { // reallocate byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer bytes to wrapBuffer System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer); countInWrapBuffer += countInReadBuffer; } this.offset += countInWrapBuffer; setResult(this.wrapBuffer, 0, countInWrapBuffer); return true; } else { return false; } } } int startPos = this.readPos - delimPos; int count; // Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; } // check why we dropped out if (delimPos == this.delimiter.length) { // we found a delimiter int readBufferBytesRead = this.readPos - startPos; this.offset += countInWrapBuffer + readBufferBytesRead; count = readBufferBytesRead - this.delimiter.length; // copy to byte array if (countInWrapBuffer > 0) { // check wrap buffer size if (this.wrapBuffer.length < countInWrapBuffer + count) { final byte[] nb = new byte[countInWrapBuffer + count]; System.arraycopy(this.wrapBuffer, 0, nb, 0, countInWrapBuffer); this.wrapBuffer = nb; } if (count >= 0) { System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, count); } setResult(this.wrapBuffer, 0, countInWrapBuffer + count); return true; } else { setResult(this.readBuffer, startPos, count); return true; } } else { // we reached the end of the readBuffer count = this.limit - startPos; // check against the maximum record length if (((long) countInWrapBuffer) + count > this.lineLengthLimit) { throw new IOException("The record length exceeded the maximum record length (" + this.lineLengthLimit + ")."); } // Compute number of bytes to move to wrapBuffer // Chars of partially read delimiter must remain in the readBuffer. We might need to go back. int bytesToMove = count - delimPos; // ensure wrapBuffer is large enough if (this.wrapBuffer.length - countInWrapBuffer < bytesToMove) { // reallocate byte[] tmp = new byte[Math.max(this.wrapBuffer.length * 2, countInWrapBuffer + bytesToMove)]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer to wrapBuffer (except delimiter chars) System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove); countInWrapBuffer += bytesToMove; // move delimiter chars to the beginning of the readBuffer System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos); } } }
0 = 10 1 = 98 2 = 32 3 = 99
/** * Fills the read buffer with bytes read from the file starting from an offset. */ private boolean fillBuffer(int offset) throws IOException { int maxReadLength = this.readBuffer.length - offset; // special case for reading the whole split. if (this.splitLength == FileInputFormat.READ_WHOLE_SPLIT_FLAG) { int read = this.stream.read(this.readBuffer, offset, maxReadLength); if (read == -1) { this.stream.close(); this.stream = null; return false; } else { this.readPos = offset; this.limit = read; return true; } } // else .. int toRead; if (this.splitLength > 0) { // if we have more data, read that toRead = this.splitLength > maxReadLength ? maxReadLength : (int) this.splitLength; } else { // if we have exhausted our split, we need to complete the current record, or read one // more across the next split. // the reason is that the next split will skip over the beginning until it finds the first // delimiter, discarding it as an incomplete chunk of data that belongs to the last record in the // previous split. toRead = maxReadLength; this.overLimit = true; } int read = this.stream.read(this.readBuffer, offset, toRead); if (read == -1) { this.stream.close(); this.stream = null; return false; } else { this.splitLength -= read; this.readPos = offset; // position from where to start reading this.limit = read + offset; // number of valid bytes in the read buffer return true; } }
public OT nextRecord(OT record) throws IOException { if (readLine()) { return readRecord(record, this.currBuffer, this.currOffset, this.currLen); } else { this.end = true; return null; } }
// Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; }
從緩存區readBuffer複製當前行數據到 wrapBuffer
System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove);
若是有換行符,須要刪除換行符,在readBuffer
// move delimiter chars to the beginning of the readBuffer System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos);
當前切片須要讀取的個數this.limit,讀取完後,繼續讀一個1m的數據到緩存中,最後將當前行數據返回setResult
fillBuffer函數中,若是當前切處數據讀完了,會設置overLimit = true,讀下一行數據時就不知足條件就不會讀了
if (this.readPos >= this.limit) { // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes. if (!fillBuffer(delimPos)) { int countInReadBuffer = delimPos; if (countInWrapBuffer + countInReadBuffer > 0) { // we have bytes left to emit if (countInReadBuffer > 0) { // we have bytes left in the readBuffer. Move them into the wrapBuffer if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) { // reallocate byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer bytes to wrapBuffer System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer); countInWrapBuffer += countInReadBuffer; } this.offset += countInWrapBuffer; setResult(this.wrapBuffer, 0, countInWrapBuffer); return true; } else { return false; } } }
b c
protected final boolean readLine() throws IOException { if (this.stream == null || this.overLimit) { return false; } int countInWrapBuffer = 0; // position of matching positions in the delimiter byte array int delimPos = 0; while (true) { if (this.readPos >= this.limit) { // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes. if (!fillBuffer(delimPos)) { int countInReadBuffer = delimPos; if (countInWrapBuffer + countInReadBuffer > 0) { // we have bytes left to emit if (countInReadBuffer > 0) { // we have bytes left in the readBuffer. Move them into the wrapBuffer if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) { // reallocate byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer bytes to wrapBuffer System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer); countInWrapBuffer += countInReadBuffer; } this.offset += countInWrapBuffer; setResult(this.wrapBuffer, 0, countInWrapBuffer); return true; } else { return false; } } } int startPos = this.readPos - delimPos; int count; // Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; } // check why we dropped out if (delimPos == this.delimiter.length) { // we found a delimiter int readBufferBytesRead = this.readPos - startPos; this.offset += countInWrapBuffer + readBufferBytesRead; count = readBufferBytesRead - this.delimiter.length; // copy to byte array if (countInWrapBuffer > 0) { // check wrap buffer size if (this.wrapBuffer.length < countInWrapBuffer + count) { final byte[] nb = new byte[countInWrapBuffer + count]; System.arraycopy(this.wrapBuffer, 0, nb, 0, countInWrapBuffer); this.wrapBuffer = nb; } if (count >= 0) { System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, count); } setResult(this.wrapBuffer, 0, countInWrapBuffer + count); return true; } else { setResult(this.readBuffer, startPos, count); return true; } } else { // we reached the end of the readBuffer count = this.limit - startPos; // check against the maximum record length if (((long) countInWrapBuffer) + count > this.lineLengthLimit) { throw new IOException("The record length exceeded the maximum record length (" + this.lineLengthLimit + ")."); } // Compute number of bytes to move to wrapBuffer // Chars of partially read delimiter must remain in the readBuffer. We might need to go back. int bytesToMove = count - delimPos; // ensure wrapBuffer is large enough if (this.wrapBuffer.length - countInWrapBuffer < bytesToMove) { // reallocate byte[] tmp = new byte[Math.max(this.wrapBuffer.length * 2, countInWrapBuffer + bytesToMove)]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer to wrapBuffer (except delimiter chars) System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove); countInWrapBuffer += bytesToMove; // move delimiter chars to the beginning of the readBuffer System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos); } } }
Source 的操做鏈(ChainedFlatMapDriver,ChainedMapDriver,SynchronousChainedCombineDriver) 即 FlatMap -> Map -> Combine (SUM(1)),也就是source讀到的數據,都須要通過鏈上的算子操做
// start all chained tasks BatchTask.openChainedTasks(this.chainedTasks, this); ```
``` this.chainedTasks = {ArrayList@5459} size = 3
0 = {ChainedFlatMapDriver@5458} 1 = {ChainedMapDriver@5505} 2 = {SynchronousChainedCombineDriver@5506} ```
隨機讀到一個切片,給當前DataSourceTask使用,由於在Source讀取數據時是不按key分區,也就不分誰處理,有任務來處理,就給一個切片處理就行,每給出一個從總的切片中移除
final InputSplit split = splitIterator.next();
當前切片信息
LOG.debug(getLogString("Opening input split " + split.toString())); 15:12:01,928 DEBUG [CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (2/2)] org.apache.flink.runtime.operators.DataSourceTask.invoke(DataSourceTask.java:172) - Starting to read input from split [0] file:/opt/n_001_workspaces/bigdata/flink/flink-maven-scala-2/src/main/resources/data/line.txt:0+5: CHAIN DataSource (at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:19) (org.apache.flink.api.java.io.TextInp) -> FlatMap (FlatMap at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Map (Map at com.opensourceteams.module.bigdata.flink.example.dataset.worldcount.WordCountRun$.main(WordCountRun.scala:23)) -> Combine (SUM(1)) (2/2)
對當前切片進行處理 ,調用 DelimitedInputFormat.open(),//open還沒開始真正的讀數據,只是定位,把第一個換行符,分到前一個分片,本身從第二個換行符開始讀取數據
format.open(split);
@Override public void invoke() throws Exception { // -------------------------------------------------------------------- // Initialize // -------------------------------------------------------------------- initInputFormat(); LOG.debug(getLogString("Start registering input and output")); try { initOutputs(getUserCodeClassLoader()); } catch (Exception ex) { throw new RuntimeException("The initialization of the DataSource's outputs caused an error: " + ex.getMessage(), ex); } LOG.debug(getLogString("Finished registering input and output")); // -------------------------------------------------------------------- // Invoke // -------------------------------------------------------------------- LOG.debug(getLogString("Starting data source operator")); RuntimeContext ctx = createRuntimeContext(); final Counter numRecordsOut; { Counter tmpNumRecordsOut; try { OperatorIOMetricGroup ioMetricGroup = ((OperatorMetricGroup) ctx.getMetricGroup()).getIOMetricGroup(); ioMetricGroup.reuseInputMetricsForTask(); if (this.config.getNumberOfChainedStubs() == 0) { ioMetricGroup.reuseOutputMetricsForTask(); } tmpNumRecordsOut = ioMetricGroup.getNumRecordsOutCounter(); } catch (Exception e) { LOG.warn("An exception occurred during the metrics setup.", e); tmpNumRecordsOut = new SimpleCounter(); } numRecordsOut = tmpNumRecordsOut; } Counter completedSplitsCounter = ctx.getMetricGroup().counter("numSplitsProcessed"); if (RichInputFormat.class.isAssignableFrom(this.format.getClass())) { ((RichInputFormat) this.format).setRuntimeContext(ctx); LOG.debug(getLogString("Rich Source detected. Initializing runtime context.")); ((RichInputFormat) this.format).openInputFormat(); LOG.debug(getLogString("Rich Source detected. Opening the InputFormat.")); } ExecutionConfig executionConfig = getExecutionConfig(); boolean objectReuseEnabled = executionConfig.isObjectReuseEnabled(); LOG.debug("DataSourceTask object reuse: " + (objectReuseEnabled ? "ENABLED" : "DISABLED") + "."); final TypeSerializer<OT> serializer = this.serializerFactory.getSerializer(); try { // start all chained tasks BatchTask.openChainedTasks(this.chainedTasks, this); // get input splits to read final Iterator<InputSplit> splitIterator = getInputSplits(); // for each assigned input split while (!this.taskCanceled && splitIterator.hasNext()) { // get start and end final InputSplit split = splitIterator.next(); LOG.debug(getLogString("Opening input split " + split.toString())); final InputFormat<OT, InputSplit> format = this.format; // open input format format.open(split); LOG.debug(getLogString("Starting to read input from split " + split.toString())); try { final Collector<OT> output = new CountingCollector<>(this.output, numRecordsOut); if (objectReuseEnabled) { OT reuse = serializer.createInstance(); // as long as there is data to read while (!this.taskCanceled && !format.reachedEnd()) { OT returned; if ((returned = format.nextRecord(reuse)) != null) { output.collect(returned); } } } else { // as long as there is data to read while (!this.taskCanceled && !format.reachedEnd()) { OT returned; if ((returned = format.nextRecord(serializer.createInstance())) != null) { output.collect(returned); } } } if (LOG.isDebugEnabled() && !this.taskCanceled) { LOG.debug(getLogString("Closing input split " + split.toString())); } } finally { // close. We close here such that a regular close throwing an exception marks a task as failed. format.close(); } completedSplitsCounter.inc(); } // end for all input splits // close the collector. if it is a chaining task collector, it will close its chained tasks this.output.close(); // close all chained tasks letting them report failure BatchTask.closeChainedTasks(this.chainedTasks, this); } catch (Exception ex) { // close the input, but do not report any exceptions, since we already have another root cause try { this.format.close(); } catch (Throwable ignored) {} BatchTask.cancelChainedTasks(this.chainedTasks); ex = ExceptionInChainedStubException.exceptionUnwrap(ex); if (ex instanceof CancelTaskException) { // forward canceling exception throw ex; } else if (!this.taskCanceled) { // drop exception, if the task was canceled BatchTask.logAndThrowException(ex, this); } } finally { BatchTask.clearWriters(eventualOutputs); // -------------------------------------------------------------------- // Closing // -------------------------------------------------------------------- if (this.format != null && RichInputFormat.class.isAssignableFrom(this.format.getClass())) { ((RichInputFormat) this.format).closeInputFormat(); LOG.debug(getLogString("Rich Source detected. Closing the InputFormat.")); } } if (!this.taskCanceled) { LOG.debug(getLogString("Finished data source operator")); } else { LOG.debug(getLogString("Data source operator cancelled")); } }
/** * Opens the given input split. This method opens the input stream to the specified file, allocates read buffers * and positions the stream at the correct position, making sure that any partial record at the beginning is skipped. * * @param split The input split to open. * * @see org.apache.flink.api.common.io.FileInputFormat#open(org.apache.flink.core.fs.FileInputSplit) */ @Override public void open(FileInputSplit split) throws IOException { super.open(split); initBuffers(); this.offset = splitStart; if (this.splitStart != 0) { this.stream.seek(offset); readLine(); // if the first partial record already pushes the stream over // the limit of our split, then no record starts within this split if (this.overLimit) { this.end = true; } } else { fillBuffer(0); } }
調置當前分片
this.currentSplit = fileSplit;
調置當前分片的開始位置
this.splitStart = fileSplit.getStart();
調置當前分片的長度
this.splitLength = fileSplit.getLength();
流定位到開始位置
// get FSDataInputStream if (this.splitStart != 0) { this.stream.seek(this.splitStart); }
/** * Opens an input stream to the file defined in the input format. * The stream is positioned at the beginning of the given split. * <p> * The stream is actually opened in an asynchronous thread to make sure any interruptions to the thread * working on the input format do not reach the file system. */ @Override public void open(FileInputSplit fileSplit) throws IOException { this.currentSplit = fileSplit; this.splitStart = fileSplit.getStart(); this.splitLength = fileSplit.getLength(); if (LOG.isDebugEnabled()) { LOG.debug("Opening input split " + fileSplit.getPath() + " [" + this.splitStart + "," + this.splitLength + "]"); } // open the split in an asynchronous thread final InputSplitOpenThread isot = new InputSplitOpenThread(fileSplit, this.openTimeout); isot.start(); try { this.stream = isot.waitForCompletion(); this.stream = decorateInputStream(this.stream, fileSplit); } catch (Throwable t) { throw new IOException("Error opening the Input Split " + fileSplit.getPath() + " [" + splitStart + "," + splitLength + "]: " + t.getMessage(), t); } // get FSDataInputStream if (this.splitStart != 0) { this.stream.seek(this.splitStart); } }
默認的readBuffer大小爲1M,wrapBuffer 爲256 byte
當前切片默認值設置
this.readPos = 0; this.limit = 0; this.overLimit = false; this.end = false;
private void initBuffers() { this.bufferSize = this.bufferSize <= 0 ? DEFAULT_READ_BUFFER_SIZE : this.bufferSize; if (this.bufferSize <= this.delimiter.length) { throw new IllegalArgumentException("Buffer size must be greater than length of delimiter."); } if (this.readBuffer == null || this.readBuffer.length != this.bufferSize) { this.readBuffer = new byte[this.bufferSize]; } if (this.wrapBuffer == null || this.wrapBuffer.length < 256) { this.wrapBuffer = new byte[256]; } this.readPos = 0; this.limit = 0; this.overLimit = false; this.end = false; }
0 = 10 1 = 98 2 = 32 3 = 99
/** * Fills the read buffer with bytes read from the file starting from an offset. */ private boolean fillBuffer(int offset) throws IOException { int maxReadLength = this.readBuffer.length - offset; // special case for reading the whole split. if (this.splitLength == FileInputFormat.READ_WHOLE_SPLIT_FLAG) { int read = this.stream.read(this.readBuffer, offset, maxReadLength); if (read == -1) { this.stream.close(); this.stream = null; return false; } else { this.readPos = offset; this.limit = read; return true; } } // else .. int toRead; if (this.splitLength > 0) { // if we have more data, read that toRead = this.splitLength > maxReadLength ? maxReadLength : (int) this.splitLength; } else { // if we have exhausted our split, we need to complete the current record, or read one // more across the next split. // the reason is that the next split will skip over the beginning until it finds the first // delimiter, discarding it as an incomplete chunk of data that belongs to the last record in the // previous split. toRead = maxReadLength; this.overLimit = true; } int read = this.stream.read(this.readBuffer, offset, toRead); if (read == -1) { this.stream.close(); this.stream = null; return false; } else { this.splitLength -= read; this.readPos = offset; // position from where to start reading this.limit = read + offset; // number of valid bytes in the read buffer return true; } }
public OT nextRecord(OT record) throws IOException { if (readLine()) { return readRecord(record, this.currBuffer, this.currOffset, this.currLen); } else { this.end = true; return null; } }
// Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; }
從緩存區readBuffer複製當前行數據到 wrapBuffer
System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove);
若是有換行符,須要刪除換行符,在readBuffer
// move delimiter chars to the beginning of the readBuffer System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos);
當前切片須要讀取的個數this.limit,讀取完後,繼續讀一個1m的數據到緩存中,最後將當前行數據返回setResult
fillBuffer函數中,若是當前切處數據讀完了,會設置overLimit = true,讀下一行數據時就不知足條件就不會讀了
if (this.readPos >= this.limit) { // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes. if (!fillBuffer(delimPos)) { int countInReadBuffer = delimPos; if (countInWrapBuffer + countInReadBuffer > 0) { // we have bytes left to emit if (countInReadBuffer > 0) { // we have bytes left in the readBuffer. Move them into the wrapBuffer if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) { // reallocate byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer bytes to wrapBuffer System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer); countInWrapBuffer += countInReadBuffer; } this.offset += countInWrapBuffer; setResult(this.wrapBuffer, 0, countInWrapBuffer); return true; } else { return false; } } }
b c
protected final boolean readLine() throws IOException { if (this.stream == null || this.overLimit) { return false; } int countInWrapBuffer = 0; // position of matching positions in the delimiter byte array int delimPos = 0; while (true) { if (this.readPos >= this.limit) { // readBuffer is completely consumed. Fill it again but keep partially read delimiter bytes. if (!fillBuffer(delimPos)) { int countInReadBuffer = delimPos; if (countInWrapBuffer + countInReadBuffer > 0) { // we have bytes left to emit if (countInReadBuffer > 0) { // we have bytes left in the readBuffer. Move them into the wrapBuffer if (this.wrapBuffer.length - countInWrapBuffer < countInReadBuffer) { // reallocate byte[] tmp = new byte[countInWrapBuffer + countInReadBuffer]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer bytes to wrapBuffer System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, countInReadBuffer); countInWrapBuffer += countInReadBuffer; } this.offset += countInWrapBuffer; setResult(this.wrapBuffer, 0, countInWrapBuffer); return true; } else { return false; } } } int startPos = this.readPos - delimPos; int count; // Search for next occurrence of delimiter in read buffer. while (this.readPos < this.limit && delimPos < this.delimiter.length) { if ((this.readBuffer[this.readPos]) == this.delimiter[delimPos]) { // Found the expected delimiter character. Continue looking for the next character of delimiter. delimPos++; } else { // Delimiter does not match. // We have to reset the read position to the character after the first matching character // and search for the whole delimiter again. readPos -= delimPos; delimPos = 0; } readPos++; } // check why we dropped out if (delimPos == this.delimiter.length) { // we found a delimiter int readBufferBytesRead = this.readPos - startPos; this.offset += countInWrapBuffer + readBufferBytesRead; count = readBufferBytesRead - this.delimiter.length; // copy to byte array if (countInWrapBuffer > 0) { // check wrap buffer size if (this.wrapBuffer.length < countInWrapBuffer + count) { final byte[] nb = new byte[countInWrapBuffer + count]; System.arraycopy(this.wrapBuffer, 0, nb, 0, countInWrapBuffer); this.wrapBuffer = nb; } if (count >= 0) { System.arraycopy(this.readBuffer, 0, this.wrapBuffer, countInWrapBuffer, count); } setResult(this.wrapBuffer, 0, countInWrapBuffer + count); return true; } else { setResult(this.readBuffer, startPos, count); return true; } } else { // we reached the end of the readBuffer count = this.limit - startPos; // check against the maximum record length if (((long) countInWrapBuffer) + count > this.lineLengthLimit) { throw new IOException("The record length exceeded the maximum record length (" + this.lineLengthLimit + ")."); } // Compute number of bytes to move to wrapBuffer // Chars of partially read delimiter must remain in the readBuffer. We might need to go back. int bytesToMove = count - delimPos; // ensure wrapBuffer is large enough if (this.wrapBuffer.length - countInWrapBuffer < bytesToMove) { // reallocate byte[] tmp = new byte[Math.max(this.wrapBuffer.length * 2, countInWrapBuffer + bytesToMove)]; System.arraycopy(this.wrapBuffer, 0, tmp, 0, countInWrapBuffer); this.wrapBuffer = tmp; } // copy readBuffer to wrapBuffer (except delimiter chars) System.arraycopy(this.readBuffer, startPos, this.wrapBuffer, countInWrapBuffer, bytesToMove); countInWrapBuffer += bytesToMove; // move delimiter chars to the beginning of the readBuffer System.arraycopy(this.readBuffer, this.readPos - delimPos, this.readBuffer, 0, delimPos); } } }
end