「函數
傅里葉變換在物理學、數論、組合數學、信號處理、機率論、統計學、密碼學、聲學、光學、海洋學、結構動力學等領域都有着普遍的應用(例如在信號處理中,傅里葉變換的典型用途是將信號分解成幅值份量和頻率份量)。工具
」數學
傅里葉變換能將知足必定條件的某個函數表示成三角函數(正弦和/或餘弦函數)或者它們的積分的線性組合。在不一樣的研究領域,傅里葉變換具備多種不一樣的變體形式,如連續傅里葉變換和離散傅里葉變換。自動化
傅里葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。理解的關鍵是:一個連續的信號能夠看做是一個個小信號的疊加,從時域疊加與從頻域疊加均可以組成原來的信號,將信號這麼分解後有助於處理。基礎
咱們原來對一個信號實際上是從時間的角度去理解的,不知不覺中,實際上是按照時間把信號進行分割,每一部分只是一個時間點對應一個信號值,一個信號是一組這樣的份量的疊加。傅里葉變換後,其實仍是個疊加問題,只不過是從頻率的角度去疊加,只不過每一個小信號是一個時間域上覆蓋整個區間的信號,但他確有固定的週期,或者說,給了一個週期,咱們就能畫出一個整個區間上的分信號,那麼給定一組週期值(或頻率值),咱們就能夠畫出其對應的曲線,就像給出時域上每一點的信號值同樣,不過若是信號是週期的話 ,頻域的更簡單,只須要幾個甚至一個就能夠了,時域則須要整個時間軸上每一點都映射出一個函數值。音頻
傅里葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;傅里葉逆變換剛好相反。這都是一個信號的不一樣表示形式。它的公式會用就能夠,固然把證實看懂了更好。變量
對一個信號作傅里葉變換,能夠獲得其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率份量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關係嗎?信號前一段的相位(頻域)與後一段的相位的變化是否與信號的頻率成正比關係。密碼
傅里葉變換就是把一個信號,分解成無數的正弦波(或者餘弦波)信號。也就是說,用無數的正弦波,能夠合成任何你所須要的信號。方法
想想這個問題:給你不少正弦信號,你怎樣才能合成你須要的信號呢?答案是要兩個條件,一個是每一個正弦波的幅度,另外一個就是每一個正弦波之間的相位差。因此如今應該明白了吧,頻域上的相位,就是每一個正弦波之間的相位。 統計
傅里葉變換用於信號的頻率域分析,通常咱們把電信號描述成時間域的數學模型,而數字信號處理對信號的頻率特性更感興趣,而經過傅立葉變換很容易獲得信號的頻率域特性。
傅里葉變換簡單通俗理解就是把看似雜亂無章的信號考慮成由必定振幅、相位、頻率的基本正弦(餘弦)信號組合而成,傅里葉變換的目的就是找出這些基本正弦(餘弦)信號中振幅較大(能量較高)信號對應的頻率,從而找出雜亂無章的信號中的主要振動頻率特色。如減速機故障時,經過傅里葉變換作頻譜分析,根據各級齒輪轉速、齒數與雜音頻譜中振幅大的對比,能夠快速判斷哪級齒輪損傷。
拉普拉斯變換,是工程數學中經常使用的一種積分變換。它是爲簡化計算而創建的實變量函數和復變量函數間的一種函數變換。對一個實變量函數做拉普拉斯變換,並在複數域中做各類運算,再將運算結果做拉普拉斯反變換來求得實數域中的相應結果,每每比直接在實數域中求出一樣的結果在計算上容易得多。拉普拉斯變換的這種運算步驟對於求解線性微分方程尤其有效,它可把微分方程化爲容易求解的代數方程來處理,從而使計算簡化。在經典控制理論中,對控制系統的分析和綜合,都是創建在拉普拉斯變換的基礎上的。
引入拉普拉斯變換的一個主要優勢,是可採用傳遞函數代替微分方程來描述系統的特性。這就爲採用直觀和簡便的圖解方法來肯定控制系統的整個特性(見信號流程圖、動態結構圖)、分析控制系統的運動過程(見奈奎斯特穩定判據、根軌跡法),以及綜合控制系統的校訂裝置(見控制系統校訂方法)提供了可能性。
拉普拉斯變換在工程學上的應用:應用拉普拉斯變換解常變量齊次微分方程,能夠將微分方程化爲代數方程,使問題得以解決。在工程學上,拉普拉斯變換的重大意義在於:將一個信號從時域上,轉換爲複頻域(s域)上來表示;在線性系統,控制自動化上都有普遍的應用。
在數字信號處理中,Z變換是一種很是重要的分析工具。但在一般的應用中,咱們每每只須要分析信號或系統的頻率響應,也便是說一般只須要進行傅里葉變換便可。那麼,爲何還要引進Z變換呢?
Z變換和傅里葉變換之間有存在什麼樣的關係呢?傅里葉變換的物理意義很是清晰:將一般在時域表示的信號,分解爲多個正弦信號的疊加。每一個正弦信號用幅度、頻率、相位就能夠徹底表徵。傅里葉變換以後的信號一般稱爲頻譜,頻譜包括幅度譜和相位譜,分別表示幅度隨頻率的分佈及相位隨頻率的分佈。在天然界,頻率是有明確的物理意義的,好比說聲音信號,男同胞聲音低沉雄渾,這主要是由於男聲中低頻份量更多;女同胞多高亢清脆,這主要是由於女聲中高頻份量更多。
對一個信號來講,就包含的信息量來說,時域信號及其相應的傅里葉變換以後的信號是徹底同樣的。那傅里葉變換有什麼做用呢?由於有的信號主要在時域表現其特性,如電容充放電的過程;而有的信號則主要在頻域表現其特性,如機械的振動,人類的語音等。若信號的特徵主要在頻域表示的話,則相應的時域信號看起來可能雜亂無章,但在頻域則解讀很是方便。
在實際中,當咱們採集到一段信號以後,在沒有任何先驗信息的狀況下,直覺是試圖在時域能發現一些特徵,若是在時域無所發現的話,很天然地將信號轉換到頻域再看看能有什麼特徵。信號的時域描述與頻域描述,就像一枚硬幣的兩面,看起來雖然有所不一樣,但實際上都是同一個東西。正由於如此,在一般的信號與系統的分析過程當中,咱們很是關心傅里葉變換。
既然人們只關心信號的頻域表示,那麼Z變換又是怎麼回事呢?要說到Z變換,可能還要先追溯到拉普拉斯變換。拉普拉斯變換是以法國數學家拉普拉斯命名的一種變換方法,主要是針對連續信號的分析。拉普拉斯(1749年3月23日-1827年3月5日)和傅里葉(1768年3月21日-1830年5月16日)都是同時代的人,他們所處的時代在法國是處於拿破崙時代,國力鼎盛。在科學上也取代英國成爲當時世界的中心,在當時衆多的科學大師中,拉普拉斯、拉格朗日(1736年1月25日-1813年4月10日)、傅里葉就是他們中間最爲璀璨的三顆星。傅里葉關於信號能夠分解爲正弦信號疊加的論文,其評審人即包括拉普拉斯和拉格朗日。
回到正題,傅里葉變換雖然好用,並且物理意義明確,但有一個最大的問題是其存在的條件比較苛刻,好比時域內絕對可積的信號纔可能存在傅里葉變換。拉普拉斯變換能夠說是推廣了這以概念。在天然界,指數信號exp(-x)是衰減最快的信號之一,對信號乘上指數信號以後,很容易知足絕對可積的條件。所以將原始信號乘上指數信號以後通常都能知足傅里葉變換的條件,這種變換就是拉普拉斯變換。這種變換能將微分方程轉化爲代數方程,在18世紀計算機還遠未發明的時候,意義很是重大。
從上面的分析能夠看出,傅里葉變換能夠看作是拉普拉斯的一種特殊形式,即所乘的指數信號爲exp(0)。也便是說拉普拉斯變換是傅里葉變換的推廣,是一種更廣泛的表達形式。在進行信號與系統的分析過程當中,能夠先獲得拉普拉斯變換這種更廣泛的結果,而後再獲得傅里葉變換這種特殊的結果。這種由廣泛到特殊的解決辦法,已經證實在連續信號與系統的分析中可以帶來很大的方便。
Z變換能夠說是針對離散信號和系統的拉普拉斯變換,由此咱們就很容易理解Z變換的重要性,也很容易理解Z變換和傅里葉變換之間的關係。Z變換中的Z平面與拉普拉斯中的S平面存在映射的關係,z=exp(Ts)。在Z變換中,單位圓上的結果即對應離散時間傅里葉變換的結果。