[TOC]java
//方式1 package cn.itcats.thread.Test1; public class Demo1 extends Thread{ //重寫的是父類Thread的run() public void run() { System.out.println(getName()+"is running..."); } public static void main(String[] args) { Demo1 demo1 = new Demo1(); Demo1 demo2 = new Demo1(); demo1.start(); demo2.start(); } }
實現Runnable接口只是完成了線程任務的編寫
若要啓動線程,須要new Thread(Runnable target),再有thread對象調用start()方法啓動線程
此處咱們只是重寫了Runnable接口的Run()方法,並未重寫Thread類的run(),讓咱們看看Thread類run()的實現
本質上也是調用了咱們傳進去的Runnale target對象的run()方法spring
//Thread類源碼中的run()方法 //target爲Thread 成員變量中的 private Runnable target; @Override public void run() { if (target != null) { target.run(); } }
因此第二種建立線程的實現代碼以下:多線程
package cn.itcats.thread.Test1; /** * 第二種建立啓動線程的方式 * 實現Runnale接口 * @author fatah */ public class Demo2 implements Runnable{ //重寫的是Runnable接口的run() public void run() { System.out.println("implements Runnable is running"); } public static void main(String[] args) { Thread thread1 = new Thread(new Demo2()); Thread thread2 = new Thread(new Demo2()); thread1.start(); thread2.start(); } }
實現Runnable接口相比第一種繼承Thread類的方式,使用了面向接口,將任務與線程進行分離,有利於解耦框架
適用於建立啓動線程次數較少的環境,書寫更加簡便
具體代碼實現:異步
package cn.itcats.thread.Test1; /** * 建立啓動線程的第三種方式————匿名內部類 * @author fatah */ public class Demo3 { public static void main(String[] args) { //方式1:至關於繼承了Thread類,做爲子類重寫run()實現 new Thread() { public void run() { System.out.println("匿名內部類建立線程方式1..."); }; }.start(); //方式2:實現Runnable,Runnable做爲匿名內部類 new Thread(new Runnable() { public void run() { System.out.println("匿名內部類建立線程方式2..."); } } ).start(); } }
以上兩種方式,都沒有返回值且都沒法拋出異常。
Callable和Runnbale同樣表明着任務,只是Callable接口中不是run(),而是call()方法,但二者類似,即都表示執行任務,call()方法的返回值類型即爲Callable接口的泛型
具體代碼實現:ide
package cn.itcats.thread.Test1; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.Future; import java.util.concurrent.FutureTask; import java.util.concurrent.RunnableFuture; /** * 方式4:實現Callable<T> 接口 * 含返回值且可拋出異常的線程建立啓動方式 * @author fatah */ public class Demo5 implements Callable<String>{ public String call() throws Exception { System.out.println("正在執行新建線程任務"); Thread.sleep(2000); return "新建線程睡了2s後返回執行結果"; } public static void main(String[] args) throws InterruptedException, ExecutionException { Demo5 d = new Demo5(); /* call()只是線程任務,對線程任務進行封裝 class FutureTask<V> implements RunnableFuture<V> interface RunnableFuture<V> extends Runnable, Future<V> */ FutureTask<String> task = new FutureTask<>(d); Thread t = new Thread(task); t.start(); System.out.println("提早完成任務..."); //獲取任務執行後返回的結果 String result = task.get(); System.out.println("線程執行結果爲"+result); } }
關於Timmer的幾個構造方法
spa
執行定時器任務使用的是schedule方法:
線程
具體代碼實現:code
package cn.itcats.thread.Test1; import java.util.Timer; import java.util.TimerTask; /** * 方法5:建立啓動線程之Timer定時任務 * @author fatah */ public class Demo6 { public static void main(String[] args) { Timer timer = new Timer(); timer.schedule(new TimerTask() { @Override public void run() { System.out.println("定時任務延遲0(即馬上執行),每隔1000ms執行一次"); } }, 0, 1000); } }
咱們發現Timer有不可控的缺點,當任務未執行完畢或咱們每次想執行不一樣任務時候,實現起來比較麻煩。這裏推薦一個比較優秀的開源做業調度框架「quartz」,在後期我可能會寫一篇關於quartz的博文。對象
下降了建立線程和銷燬線程時間開銷和資源浪費
具體代碼實現:
package cn.itcats.thread.Test1; import java.util.concurrent.Executor; import java.util.concurrent.Executors; public class Demo7 { public static void main(String[] args) { //建立帶有5個線程的線程池 //返回的其實是ExecutorService,而ExecutorService是Executor的子接口 Executor threadPool = Executors.newFixedThreadPool(5); for(int i = 0 ;i < 10 ; i++) { threadPool.execute(new Runnable() { public void run() { System.out.println(Thread.currentThread().getName()+" is running"); } }); } } }
運行結果:
pool-1-thread-3 is running
pool-1-thread-1 is running
pool-1-thread-4 is running
pool-1-thread-3 is running
pool-1-thread-5 is running
pool-1-thread-2 is running
pool-1-thread-5 is running
pool-1-thread-3 is running
pool-1-thread-1 is running
pool-1-thread-4 is running
運行完畢,但程序並未中止,緣由是線程池並未銷燬,若想銷燬調用threadPool.shutdown(); 注意須要把我上面的
Executor threadPool = Executors.newFixedThreadPool(10); 改成
ExecutorService threadPool = Executors.newFixedThreadPool(10); 不然無shutdown()方法
若建立的是CachedThreadPool則不須要指定線程數量,線程數量多少取決於線程任務,不夠用則建立線程,夠用則回收。
package cn.itcats.thread.Test1; import java.util.ArrayList; import java.util.Arrays; import java.util.List; /** * 使用Lambda表達式並行計算 * parallelStream * @author fatah */ public class Demo8 { public static void main(String[] args) { List<Integer> list = Arrays.asList(1,2,3,4,5,6); Demo8 demo = new Demo8(); int result = demo.add(list); System.out.println("計算後的結果爲"+result); } public int add(List<Integer> list) { //若Lambda是串行執行,則應順序打印 list.parallelStream().forEach(System.out :: println); //Lambda有stream和parallelSteam(並行) return list.parallelStream().mapToInt(i -> i).sum(); } }
運行結果:
4
1
3
5
6
2
計算後的結果爲21
事實證實是並行執行
package cn.itcats.thread; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.annotation.EnableAsync; @Configuration @ComponentScan("cn.itcats.thread") @EnableAsync public class Config { }
package cn.itcats.thread; import org.springframework.scheduling.annotation.Async; import org.springframework.stereotype.Service; @Service public class AsyncService { @Async public void Async_A() { System.out.println("Async_A is running"); } @Async public void Async_B() { System.out.println("Async_B is running"); } }
package cn.itcats.thread; import org.springframework.context.annotation.AnnotationConfigApplicationContext; public class Run { public static void main(String[] args) { //構造方法傳遞Java配置類Config.class AnnotationConfigApplicationContext ac = new AnnotationConfigApplicationContext(Config.class); AsyncService bean = ac.getBean(AsyncService.class); bean.Async_A(); bean.Async_B(); } }
關注公衆號:java寶典