何時擴容:當向容器添加元素的時候,會判斷當前容器的元素個數,若是大於等於閾值---即當前數組的長度乘以加載因子的值的時候,就要自動擴容啦。java
擴容(resize)就是從新計算容量,向HashMap對象裏不停的添加元素,而HashMap對象內部的數組沒法裝載更多的元素時,對象就須要擴大數組的長度,以便能裝入更多的元素。固然Java裏的數組是沒法自動擴容的,方法是使用一個新的數組代替已有的容量小的數組,就像咱們用一個小桶裝水,若是想裝更多的水,就得換大水桶。算法
咱們分析下resize的源碼,鑑於JDK1.8融入了紅黑樹,較複雜,爲了便於理解咱們仍然使用JDK1.7的代碼,好理解一些,本質上區別不大,具體區別後文再說。數組
這裏就是使用一個容量更大的數組來代替已有的容量小的數組,transfer()方法將原有Entry數組的元素拷貝到新的Entry數組裏。數據結構
文章中間部分:4、存儲實現;詳細解釋了爲何indexFor方法中要h & (length-1)優化
newTable[i]的引用賦給了e.next,也就是使用了單鏈表的頭插入方式,同一位置上新元素總會被放在鏈表的頭部位置;這樣先放在一個索引上的元素終會被放到Entry鏈的尾部(若是發生了hash衝突的話),這一點和Jdk1.8有區別,下文詳解。在舊數組中同一條Entry鏈上的元素,經過從新計算索引位置後,有可能被放到了新數組的不一樣位置上。this
下面舉個例子說明下擴容過程。spa
這句話是重點----hash(){return key % table.length;}方法,就是翻譯下面的一行解釋:.net
假設了咱們的hash算法就是簡單的用key mod 一下表的大小(也就是數組的長度)。翻譯
其中的哈希桶數組table的size=2, 因此key = 三、七、5,put順序依次爲 五、七、3。在mod 2之後都衝突在table[1]這裏了。這裏假設負載因子 loadFactor=1,即當鍵值對的實際大小size 大於 table的實際大小時進行擴容。接下來的三個步驟是哈希桶數組 resize成4,而後全部的Node從新rehash的過程。設計
下面咱們講解下JDK1.8作了哪些優化。通過觀測能夠發現,咱們使用的是2次冪的擴展(指長度擴爲原來2倍),因此,
通過rehash以後,元素的位置要麼是在原位置,要麼是在原位置再移動2次冪的位置。對應的就是下方的resize的註釋。
看下圖能夠明白這句話的意思,n爲table的長度,圖(a)表示擴容前的key1和key2兩種key肯定索引位置的示例,圖(b)表示擴容後key1和key2兩種key肯定索引位置的示例,其中hash1是key1對應的哈希與高位運算結果。
元素在從新計算hash以後,由於n變爲2倍,那麼n-1的mask範圍在高位多1bit(紅色),所以新的index就會發生這樣的變化:
所以,咱們在擴充HashMap的時候,不須要像JDK1.7的實現那樣從新計算hash,只須要看看原來的hash值新增的那個bit是1仍是0就行了,是0的話索引沒變,是1的話索引變成「原索引+oldCap」,能夠看看下圖爲16擴充爲32的resize示意圖:
這個設計確實很是的巧妙,既省去了從新計算hash值的時間,並且同時,因爲新增的1bit是0仍是1能夠認爲是隨機的,所以resize的過程,均勻的把以前的衝突的節點分散到新的bucket了。這一塊就是JDK1.8新增的優化點。有一點注意區別,JDK1.7中rehash的時候,舊鏈表遷移新鏈表的時候,若是在新表的數組索引位置相同,則鏈表元素會倒置,可是從上圖能夠看出,JDK1.8不會倒置。有興趣的同窗能夠研究下JDK1.8的resize源碼,寫的很贊,以下:
1 final Node<K,V>[] resize() { 2 Node<K,V>[] oldTab = table; 3 int oldCap = (oldTab == null) ? 0 : oldTab.length; 4 int oldThr = threshold; 5 int newCap, newThr = 0; 6 if (oldCap > 0) { 7 // 超過最大值就再也不擴充了,就只好隨你碰撞去吧 8 if (oldCap >= MAXIMUM_CAPACITY) { 9 threshold = Integer.MAX_VALUE; 10 return oldTab; 11 } 12 // 沒超過最大值,就擴充爲原來的2倍 13 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 14 oldCap >= DEFAULT_INITIAL_CAPACITY) 15 newThr = oldThr << 1; // double threshold 16 } 17 else if (oldThr > 0) // initial capacity was placed in threshold 18 newCap = oldThr; 19 else { // zero initial threshold signifies using defaults 20 newCap = DEFAULT_INITIAL_CAPACITY; 21 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 22 } 23 // 計算新的resize上限 24 if (newThr == 0) { 25 26 float ft = (float)newCap * loadFactor; 27 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 28 (int)ft : Integer.MAX_VALUE); 29 } 30 threshold = newThr; 31 @SuppressWarnings({"rawtypes","unchecked"}) 32 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 33 table = newTab; 34 if (oldTab != null) { 35 // 把每一個bucket都移動到新的buckets中 36 for (int j = 0; j < oldCap; ++j) { 37 Node<K,V> e; 38 if ((e = oldTab[j]) != null) { 39 oldTab[j] = null; 40 if (e.next == null) 41 newTab[e.hash & (newCap - 1)] = e; 42 else if (e instanceof TreeNode) 43 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 44 else { // 鏈表優化重hash的代碼塊 45 Node<K,V> loHead = null, loTail = null; 46 Node<K,V> hiHead = null, hiTail = null; 47 Node<K,V> next; 48 do { 49 next = e.next; 50 // 原索引 51 if ((e.hash & oldCap) == 0) { 52 if (loTail == null) 53 loHead = e; 54 else 55 loTail.next = e; 56 loTail = e; 57 } 58 // 原索引+oldCap 59 else { 60 if (hiTail == null) 61 hiHead = e; 62 else 63 hiTail.next = e; 64 hiTail = e; 65 } 66 } while ((e = next) != null); 67 // 原索引放到bucket裏 68 if (loTail != null) { 69 loTail.next = null; 70 newTab[j] = loHead; 71 } 72 // 原索引+oldCap放到bucket裏 73 if (hiTail != null) { 74 hiTail.next = null; 75 newTab[j + oldCap] = hiHead; 76 } 77 } 78 } 79 } 80 } 81 return newTab; 82 }