上一篇:數據結構-區塊Blockhtml
首先,經過blockchain.info查看一筆交易的基本數據結構:編程
/** An outpoint - a combination of a transaction hash and an index n into its vout * ** 一個交易哈希值與輸出下標的集合 */
class COutPoint {
public:
uint256 hash; //交易哈西
uint32_t n; //對應序列號
COutPoint(): n((uint32_t) -1) { }
COutPoint(const uint256& hashIn, uint32_t nIn): hash(hashIn), n(nIn) { }
ADD_SERIALIZE_METHODS; //用來序列化數據結構,方便存儲和傳輸
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(hash);
READWRITE(n);
}
void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
//小於號<重載函數
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
int cmp = a.hash.Compare(b.hash);
return cmp < 0 || (cmp == 0 && a.n < b.n);
}
//==重載函數
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
//!=重載函數
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製代碼
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*
**交易的輸入,包括當前輸入所對應上一筆交易的輸出位置,
*而且還包括上一筆輸出所須要的簽名腳本
*/
class CTxIn
{
public:
COutPoint prevout; //上一筆交易輸出位置
CScript scriptSig; //解鎖腳本
uint32_t nSequence; /**序列號,可用於交易的鎖定
nSequence字段的設計初心是想讓交易能在在內存中修改,惋惜後面從未運用過
對於具備nLocktime或CHECKLOCKTIMEVERIFY的交易,
nSequence值必須設置爲小於2^32,以使時間鎖定器有效。一般設置爲2^32-1
因爲BIP-68的激活,新的共識規則適用於任何包含nSequence值小於2^31的輸入的交易(bit 1<<31 is not set)。
以編程方式,這意味着若是沒有設置最高有效(bit 1<<31),它是一個表示「相對鎖定時間」的標誌。
不然(bit 1<<31set),nSequence值被保留用於其餘用途,
例如啓用CHECKLOCKTIMEVERIFY,nLocktime,Opt-In-Replace-By-Fee以及其餘將來的新產品。
一筆輸入交易,當輸入腳本中的nSequence值小於2^31時,就是相對時間鎖定的輸入交易。
這種交易只有到了相對鎖定時間後才生效。例如,
具備30個區塊的nSequence相對時間鎖的一個輸入的交易
只有在從輸入中引用的UTXO開始的時間起至少有30個塊時纔有效。
因爲nSequence是每一個輸入字段,所以交易可能包含任何數量的時間鎖定輸入,
全部這些都必須具備足夠的時間以使交易有效。
*/
CScriptWitness scriptWitness; //! Only serialized through CTransaction
/* Setting nSequence to this value for every input in a transaction
* disables nLockTime.
*
* 規則1:若是一筆交易中全部的SEQUENCE_FINAL都被賦值了相應的nSequence,那麼nLockTime就會被禁用
*/
static const uint32_t SEQUENCE_FINAL = 0xffffffff;
/* Below flags apply in the context of BIP 68*/
/* If this flag set, CTxIn::nSequence is NOT interpreted as a
* relative lock-time.
*
* 規則2:若是設置了該值,nSequence不被用於相對時間鎖定。規則1失效
*/
static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
/* If CTxIn::nSequence encodes a relative lock-time and this flag
* is set, the relative lock-time has units of 512 seconds,
* otherwise it specifies blocks with a granularity of 1.
*
* 規則3:若是規則1有效而且設置了此變量,那麼相對鎖定時間單位爲512秒,不然鎖定時間就爲1個區塊
*/
static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
/* If CTxIn::nSequence encodes a relative lock-time, this mask is
* applied to extract that lock-time from the sequence field.
*
* 規則4:若是nSequence用於相對時間鎖,即規則1有效,那麼這個變量就用來從nSequence計算對應的鎖定時間
*/
static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
/* In order to use the same number of bits to encode roughly the
* same wall-clock duration, and because blocks are naturally
* limited to occur every 600s on average, the minimum granularity
* for time-based relative lock-time is fixed at 512 seconds.
* Converting from CTxIn::nSequence to seconds is performed by
* multiplying by 512 = 2^9, or equivalently shifting up by
* 9 bits.
*
* 相對時間鎖粒度
* 爲了使用相同的位數來粗略地編碼相同的掛鐘時間,
* 由於區塊的產生限制於每600s產生一個,
* 相對時間鎖定的最小單位爲512是,512 = 2^9
* 因此相對時間鎖定的時間轉化爲至關於當前值左移9位
*/
static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
CTxIn()
{
nSequence = SEQUENCE_FINAL;
}
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(prevout);
READWRITE(scriptSig);
READWRITE(nSequence);
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製代碼
/** An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. * **交易輸出,包含輸出金額和鎖定腳本 */
class CTxOut {
public:
CAmount nValue; //輸出金額
CScript scriptPubKey; //鎖定腳本
CTxOut()
{
SetNull();
}
CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action) {
READWRITE(nValue);
READWRITE(scriptPubKey);
}
void SetNull() {
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const {
return (nValue == -1);
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const;
};
複製代碼
/** The basic transaction that is broadcasted on the network and contained in * blocks. A transaction can contain multiple inputs and outputs. * * ** 基本的交易,就是那些在網絡中廣播並被最終打包到區塊中的數據結構。 * 一個交易能夠包含多個交易輸入和輸出 */
class CTransaction {
public:
// Default transaction version.
static const int32_t CURRENT_VERSION=2; //默認交易版本
// Changing the default transaction version requires a two step process: first
// adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
// bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
// MAX_STANDARD_VERSION will be equal.
/** 更改默認交易版本須要兩個步驟: * 1.首先經過碰撞MAX_STANDARD_VERSION來調整中繼策略, * 2.而後在稍後的日期碰撞默認的CURRENT_VERSION * * 最終MAX_STANDARD_VERSION和CURRENT_VERSION會一致 */
static const int32_t MAX_STANDARD_VERSION=2;
// The local variables are made const to prevent unintended modification
// without updating the cached hash value. However, CTransaction is not
// actually immutable; deserialization and assignment are implemented,
// and bypass the constness. This is safe, as they update the entire
// strcture, including the hash.
/** 下面這些變量都被定義爲常量類型,從而避免無心識的修改了交易而沒有更新緩存的hash值; * 然而CTransaction不是可變的 * 反序列化和分配被執行的時候會繞過常量 * 這纔是安全的,由於更新整個結構包括哈希值 */
const std::vector<CTxIn> vin; //交易輸入
const std::vector<CTxOut> vout; //交易輸出
const int32_t nVersion; //版本
const uint32_t nLockTime; //鎖定時間
private:
/** Memory only. */
const uint256 hash;
uint256 ComputeHash() const;
public:
/** Construct a CTransaction that qualifies as IsNull() */
CTransaction();
/** Convert a CMutableTransaction into a CTransaction. */
/**可變交易轉換爲交易*/
CTransaction(const CMutableTransaction &tx);
CTransaction(CMutableTransaction &&tx);
template <typename Stream>
inline void Serialize(Stream& s) const {
SerializeTransaction(*this, s);
}
/** This deserializing constructor is provided instead of an Unserialize method. * Unserialize is not possible, since it would require overwriting const fields. * ** 提供此反序列化構造函數而不是Unserialize方法。 * 反序列化是不可能的,由於它須要覆蓋const字段 */
template <typename Stream>
CTransaction(deserialize_type, Stream& s) : CTransaction(CMutableTransaction(deserialize, s)) {}
bool IsNull() const {
return vin.empty() && vout.empty();
}
const uint256& GetHash() const {
return hash;
}
// Compute a hash that includes both transaction and witness data
uint256 GetWitnessHash() const; //計算包含交易和witness數據的散列
// Return sum of txouts.
CAmount GetValueOut() const; //返回交易出書金額總和
// GetValueIn() is a method on CCoinsViewCache, because
// inputs must be known to compute value in.
/** * Get the total transaction size in bytes, including witness data. * "Total Size" defined in BIP141 and BIP144. * @return Total transaction size in bytes */
unsigned int GetTotalSize() const; // 返回交易大小
bool IsCoinBase() const //判斷是不是創幣交易 {
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return a.hash == b.hash;
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return a.hash != b.hash;
}
std::string ToString() const;
bool HasWitness() const {
for (size_t i = 0; i < vin.size(); i++) {
if (!vin[i].scriptWitness.IsNull()) {
return true;
}
}
return false;
}
};
複製代碼
可變交易類,內容和CTransaction差很少。只是交易能夠直接修改,廣播中傳播和打包到區塊的交易都是CTransaction類型。緩存
交易是比特幣的核心數據結構,包括區塊在內的數據結構都是在爲交易服務。安全
數據項 | 大小(Byte) | 數據類型 | 描述 |
---|---|---|---|
Version | 4 | uint32_t | 交易版本 |
tx_in count | Varies | CompactSize Unsigned Integer | 交易輸入量 |
tx_out count | Varies | CompactSize Unsigned Integer | 交易輸出量 |
tx_in | Varies | CTxIn | 交易輸入 |
tx_in | Varies | CTxOut | 交易輸出 |
lock_time | 4 | uint32_t | 交易鎖定時間,詳見鎖定規則 |
數據項 | 大小(Byte) | 數據類型 | 描述 |
---|---|---|---|
previous_output | 36 | COutPoint | 上一個交易的輸出 |
script bytes | Varies < 10000 | CompactSize Unsigned Integer | 解鎖腳本大小 |
signature script | Varies | char[] | 解鎖腳本 |
sequence | 4 | uint32_t | 序列號,可用於相對時間鎖定 |
數據項 | 大小(Byte) | 數據類型 | 描述 |
---|---|---|---|
value | 8 | int64_t | 交易輸出,單位爲Satoshis |
pk_script bytes | Varies < 10000 | CompactSize Unsigned Integer | 鎖定腳本大小 |
pk_script | Varies | char[] | 鎖定腳本,定義花費須知足的條件 |
每個區塊內包含的第一條交易爲CoinbaseTransaction,它做爲對挖出該區塊的礦工的比特幣獎勵交易。網絡
下一篇:數據結構-交易池(TransactionPool)數據結構
###參考文獻app
. . . .
互聯網顛覆世界,區塊鏈顛覆互聯網!
--------------------------------------------------20180420 22:57