20180710完成這份工做。簡單,可是完成了仍是很開心。在我嘗試如何使用pickle保存數據後,嘗試保存PDB文件中「HEADER」中的信息。文件均保存於實驗室服務器(97.73.198.168)/home/RaidDisk/BiodataTest/zyh_pdb_test/tests路徑下。本文將記錄流程並分享統計結果。數據庫
先插入一段代碼看看json
from PDBParseBase import PDBParserBase import os import json import datetime from DBParser import ParserBase import pickle def length_counter(seqres_info): pdb_id = seqres_info['pdb_id'] number = 0 for item in seqres_info.keys(): if item != 'pdb_id' and item != 'SEQRES_serNum': number += int(seqres_info[item]['SEQRES_numRes']) pass #print(pdb_id) #print(number) id_and_lenth = [] id_and_lenth.append(pdb_id) id_and_lenth.append(number) return id_and_lenth def find_all_headers(rootdir,saveFilePath,saveFilePath2): #with the help of PDBParserBase,just put HEADER inf into a pickle with the form of list pdbbase = PDBParserBase() start = datetime.datetime.now() count = 0 f = open(saveFilePath,'wb') f2 = open(saveFilePath2,'wb') header_info_all = [] for parent,dirnames,filenames in os.walk(rootdir): #print(dirnames) #print(filenames) for filename in filenames: count = count + 1 try: PDBfile = filename #print(filename) header_info = pdbbase.get_header_info(os.path.join(parent,filename)) #print(header_info) header_info_all.append(header_info) if count %1000== 0: print(count) end = datetime.datetime.now() print (end-start) pass except: print(filename) end = datetime.datetime.now() print (end-start) pickle.dump(filename, f2) #pdb1ov7.ent else: if count %1111 == 0: print(count) pickle.dump(header_info_all, f,protocol=2) end = datetime.datetime.now() print (end-start) print("Done") return header_info_all def hd_ctr_clsfcsh(listpath): #header_counter_classfication #return a dic ,the key is the classfication and the value is the num with open(listpath, 'rb') as f: header_list = pickle.load(f) #print(header_list) dic = {} for item in header_list: classification = item['HEADER_classification'] print (classification) if 'MEMBRAN' in classification: if classification in dic.keys(): dic[classification] = dic[classification] +1 else: dic[classification] = 1 else: pass dict= sorted(dic.items(), key=lambda d:d[1], reverse = True) print(dict) return dict def get_filenames(listpath,keyword,resultpath): with open(listpath, 'rb') as f: header_list = pickle.load(f) filenames = [] for item in header_list: classification = item['HEADER_classification'] if keyword in classification: #print(item) #print (item['pdb_id']) #print (classification) id = item['pdb_id'] filenames.append(id) else: #print ('dad') pass print(len(filenames)) print(filenames) f2 = open(resultpath,'wb') pickle.dump(filenames, f2,protocol=2) print("done") return filenames if __name__ == "__main__": rootdir = "/home/BiodataTest/updb" #1 is to save list 2 is to save some wrang message saveFilePath = "/home/BiodataTest/test_picale/header_counter.pic" saveFilePath2 = "/home/BiodataTest/test_picale/header_counter_wrang.pic" #all_header_list = find_all_headers(rootdir,saveFilePath,saveFilePath2) HEADER_LIST_FILE = "/home/BiodataTest/test_picale/header_counter_list.pic" hd_ctr_clsfcsh_dic = hd_ctr_clsfcsh(HEADER_LIST_FILE) resultpath = "/home/BiodataTest/test_picale/Membrane_Filename_list.pic" #wanted_filenames = get_filenames(HEADER_LIST_FILE,'MEMBRANE',resultpath)
昨天寫的代碼,次日就忘記了。服務器
函數一:find_all_headers(rootdir,saveFilePath,saveFilePath2),輸入文件路徑,找到PDB文件中全部的「HEADER」信息,其中包括,文件日期、蛋白質種類、蛋白質名字。存入pickle文件中,保存成一個list。難點在於pickle的第三個參數的值是「2」。app
函數二:hd_ctr_clsfcsh(listpath):#header_counter_classfication,將剛纔輸入的list輸入,統計出每一個分類的數量。輸出的是一個字典,鍵是分類名字,值是該分類的數量。
函數
函數三:get_filenames(listpath,keyword,resultpath),根據關鍵詞獲取給定文件的文件名。在這裏,我將全部分類這個信息中含有「MEMBRANE」的蛋白質名字找到,保存成列表輸出到文件中。(蛋白質名字就是文件名字)this
枯燥的代碼介紹完了,來點好看的:大餅圖。spa
這個餅狀圖畫出了PDB數據庫中蛋白質種類的分佈,實際上是不許確的,好比有的蛋白分別屬於膜蛋白和轉運蛋白。可是標註爲「MEMBRANE PROTEIN, TRANSPORT PROTEIN」,那咱們把它歸爲一類。3d
咱們統計了140946個文件,總共有96(100>x)+400(100>x>9)+1606(10>x>1) +1863(x = 1) = 2965個種類。咱們選取前1%看看它們分別是什麼:code
就是它們。總共105057,佔總量140946的74.53%。也就是前百分之一的種類佔了百分之七十五的數據量。(看起來好殘酷的樣子哦)orm
第二部分是有關本身的課題,膜蛋白究竟有多少呢?額,1836個,悽慘的很。因此我擴大了搜索範圍,只要包含了「MEMBRANE」的就看成數據提取出來了。注意這個單詞的末尾有個「E」,沒有"E"的話,數量會增長5個。由於有五個文件叫作「MEMBRANCE PROTEIN」.
找到了它們以後,咱們總共得到2335個膜蛋白文件名字,以後將它們解壓好,放在預期的文件夾裏去。
from PDBParseBase import PDBParserBase import os import json import datetime from DBParser import ParserBase #import DataStorage as DS import time, os,datetime,logging,gzip,configparser,pickle def UnzipFile(fileName,unzipFileName): """""" try: zipHandle = gzip.GzipFile(mode='rb',fileobj=open(fileName,'rb')) with open(unzipFileName, 'wb') as fileHandle: fileHandle.write(zipHandle.read()) except IOError: raise("Unzip file failed!") def mkdir(path): #Created uncompress path folder isExists=os.path.exists(path) if not isExists: os.makedirs(path) print(path + " Created folder sucessful!") return True else: #print ("this path is exist") return False if __name__ == "__main__": #rootdir = "/home/BiodataTest/updb" #rootdir = "/home/BiodataTest/pdb" rootdir = "/home/BiodataTest/membraneprotein" count = 0 countcon = 0 start = datetime.datetime.now() saveFilePath = "/home/BiodataTest/picale_zyh_1000/picale.pic" #Storage = DS.DataStorage('PDB_20180410') mempt_path = "/home/BiodataTest/test_picale/Membrane_Filename_list.pic" with open(mempt_path, 'rb') as f: memprtn_file = pickle.load(f) print(memprtn_file) count = 0 for parent,dirnames,filenames in os.walk(rootdir): for filename in filenames: count = count + 1 #start unzip,get the target name and make a files dirname = filename[4:6] filename_for_membrane_1 = filename[3:7] filename_for_membrane = filename_for_membrane_1.upper() print(filename_for_membrane) if(filename_for_membrane in memprtn_file): print(filename_for_membrane) filename_with_rootdir = "/home/BiodataTest/pdb/pdb/" + str(dirname)+"/"+str(filename) unzipFileName = "/home/BiodataTest/membraneprotein/" + str(dirname)+"/"+str(filename) mkdir("/home/BiodataTest/membraneprotein/" + str(dirname)+"/") try: UnzipFile(filename_with_rootdir,unzipFileName[:-3]) pass except: continue else: #print(filename) pass pass #print(filename) end = datetime.datetime.now() print("alltime = ") print (end-start) print(count) print("Done")
因而就得到了這些膜蛋白。
第三十行「MEMBRANCE」的多字母變體英文就大剌剌的顯示在那裏。。。總結工做也是須要作好的,否則可能以後會忘記吧。