配置Anaconda環境

1. 幫助信息

  • 命令行下執行"conda -h"或「conda --help」能夠得到幫助信息;
  • 命令行下執行"conda <argument> -h"或「conda <argument> --help」能夠得到具體參數的幫助信息;
conda --help
usage: conda [-h] [-V] command ...

conda is a tool for managing and deploying applications, environments and packages.

Options:

positional arguments:
  command
    info         Display information about current conda install.
    help         Displays a list of available conda commands and their help
                 strings.
    list         List linked packages in a conda environment.
    search       Search for packages and display their information. The input
                 is a Python regular expression. To perform a search with a
                 search string that starts with a -, separate the search from
                 the options with --, like 'conda search -- -h'. A * in the
                 results means that package is installed in the current
                 environment. A . means that package is not installed but is
                 cached in the pkgs directory.
    create       Create a new conda environment from a list of specified
                 packages.
    install      Installs a list of packages into a specified conda
                 environment.
    update       Updates conda packages to the latest compatible version. This
                 command accepts a list of package names and updates them to
                 the latest versions that are compatible with all other
                 packages in the environment. Conda attempts to install the
                 newest versions of the requested packages. To accomplish
                 this, it may update some packages that are already installed,
                 or install additional packages. To prevent existing packages
                 from updating, use the --no-update-deps option. This may
                 force conda to install older versions of the requested
                 packages, and it does not prevent additional dependency
                 packages from being installed. If you wish to skip dependency
                 checking altogether, use the '--force' option. This may
                 result in an environment with incompatible packages, so this
                 option must be used with great caution.
    upgrade      Alias for conda update. See conda update --help.
    remove       Remove a list of packages from a specified conda environment.
    uninstall    Alias for conda remove. See conda remove --help.
    config       Modify configuration values in .condarc. This is modeled
                 after the git config command. Writes to the user .condarc
                 file (C:\Users\WQBin\.condarc) by default.
    clean        Remove unused packages and caches.
    package      Low-level conda package utility. (EXPERIMENTAL)

optional arguments:
  -h, --help     Show this help message and exit.
  -V, --version  Show the conda version number and exit.

other commands, such as "conda build", are available when additional conda
packages (e.g. conda-build) are installed

 

2. 添加Conda代理和國內鏡像

 

 

 根據「conda -h」的提示信息,修改配置文件(若是沒有,能夠建立)python

這裏爲「C:\Users\WQBin\.condarc」
它說這個命令和git的同樣,我去。。。git我也不太熟
conda源操做的基本命令:
conda config --show                查看當前全部配置
conda config --show-sources        查看當前使用源
conda config --remove channels     刪除指定源
conda config --add channels        加指定源
我已經添加了。正常來講用戶只有default
 

1.設置代理

向文件C:\Users\WQBin\.condarc中添加以下:
proxy_servers:
    http: http://10.144.1.10:8080
    https: http://10.144.1.10:8080

 

2.添加國內鏡像源(國內清華大學鏡像)

conda config --add channels     https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels     https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --set show_channel_urls yes

 

 

 

3.設置Conda環境和緩存的路徑(通常不用設置)

默認狀況下,Conda建立的新環境以及過往安裝的模塊緩存都存儲在用戶目錄。
默認信息不會在Conda(user-specific)配置文件「$HOME/.condarc」中體現,但可經過"conda info"查看,包括默認環境路徑、默認緩存路徑、Conda源設置等。
添加或修改「$HOME/.condarc」中的「env_dirs」和「pkgs_dirs」配置項,能夠設置conda環境和緩存(envs directories 和 package cache)的默認路徑。
按順序第一個路徑做爲默認存儲路徑,搜索環境和緩存時按前後順序在各目錄中查找。git

例如:在「$HOME/.condarc」中添加以下路徑shell

 解釋以下:express

按順序第一個路徑做爲默認存儲路徑,搜索環境和緩存時按前後順序在各目錄中查找緩存

 

 

若是要改動有兩種方法bash

方法1、在「$HOME/.condarc」中添加以下路徑app

envs_dirs:
  - D:\xxx\xxx\envs  # 按順序第一個路徑做爲默認存儲路徑,搜索環境和緩存時按前後順序在各目錄中查找
  - C:\Users\xxx\AppData\Local\conda\conda\envs
  - C:\Users\xxx\.conda\envs                        
pkgs_dirs:
  - D:\xxx\anaconda3\pkgs
  - C:\Users\xxx\AppData\Local\conda\conda\pkgs

方法2、python2.7

使用conda命令指定存放路徑:工具

conda config --add envs_dirs <環境位置絕對路徑>  # 添加環境位置
conda config --add pkgs_dirs <包位置絕對路徑>  # 添加包位置

 

4 管理Python包

4.1 升級全部工具包

安裝完成後,能夠對全部工具包進行升級,在命令行執行「conda upgrade --all」,詢問是否安裝升級版本時,輸入y。

4.2 經常使用命令

conda install <package_name>         安裝包
conda install numpy scipy pandas     同時安裝多個包
conda install numpy=1.10             安裝包的指定版本
conda install anaconda               在當前環境安裝anaconda集合包
 
conda remove <package_name>   移除包
conda update <package_name>   升級包
 
conda list                    查看當前環境已安裝的包信息
conda search <package_name>   查詢包信息
conda search <search_term>    模糊查詢包信息
 
conda install --name <env_name> <package_name>   在指定環境安裝的包信息
conda remove  --name <env_name> <package_name>   移除指定環境的包
conda update  --name <env_name> <package_name>   升級指定環境的包
conda list --name <env_name>                     查看指定環境的已安裝的包信息
 
conda update conda      更新conda
conda update anaconda   更新anaconda
conda update python     更新Python

4.3 經過pip來管理包

注意:conda和pip都是對當前環境進行安裝、升級和卸載包的操做。

ui

1. 設置容許pip訪問conda包管理,執行命令「conda config --set use_pip True」;
2.也能夠在「C:\Users\WQBin\.condarc」添加   use_pip:  true
3. 激活其中的一個運行環境
4. 在激活的運行環境中,執行pip命令來管理包,能夠經過「--proxy」參數設置代理地址;
 

5- 管理Python環境

若是安裝了 Python3 版本的 Anaconda 後,默認的 root 環境是 Python3;

5.1 經常使用命令

conda create --name <env_name>  <list of packages>    建立新環境
conda create --name testpy2 python=2.7 pandas         建立名爲testpy2的運行環境,並安裝pandas包及其依賴包
conda create --name testpy36 python=3.6 anaconda      建立名爲testpy36的運行環境,並安裝anaconda集合包(conda默認環境)
 
conda env remove --name <env_name>    刪除環境
conda env list                    顯示全部的環境
 
conda info                        顯示當前安裝的conda信息
conda info --envs                 顯示全部運行環境
 
source activate <env_name>    激活(進入)環境
source deactivate             去激活(退出)當前環境

5.2 分享運行環境

爲了保證代碼能夠正確運行,分享代碼的同時,也須要將運行環境分享;
經過conda可將當前環境下的 package 信息存入YAML 文件, 當執行他人的代碼時,可以使用此YAML文件建立一樣的運行環境;
conda env export > BackupEnv.yaml    將當前運行環境的package信息導出到名爲BackupEnv的YAML文件
conda env create --force BackupEnv.yaml   使用YAML文件建立運行環境

5.3 完整示例

建立運行環境---》查看運行環境---》進入運行環境---》退出運行環境---》刪除運行環境
$ py --version   # 當前默認python版本
Python 3.7.1
 
 
$ conda create --name py27 python=2.7 pandas  # 建立名爲py27的運行環境,並安裝pandas包及其依賴包
Solving environment: done
 
## Package Plan ##
 
  environment location: D:\app\anaconda3\envs\py27    # 建立的運行環境的所在目錄
 
  added / updated specs:  # conda僅安裝pandas和python2.7相關的必須項(pandas的依賴項,python2.7, pip等)
    - pandas
    - python=2.7
 
 
The following packages will be downloaded:    # 將要下載當前沒有的安裝包
 
    package                    |            build
    ---------------------------|-----------------
    vc-9                       |       h7299396_1           3 KB
    python-dateutil-2.7.5      |           py27_0         275 KB
    pandas-0.23.4              |   py27h39f3610_0         8.8 MB
    pytz-2018.7                |           py27_0         250 KB
    certifi-2018.10.15         |           py27_0         139 KB
    setuptools-40.5.0          |           py27_0         653 KB
    numpy-root-1.15.4          |   py27h2753ae9_0         3.8 MB
    pip-18.1                   |           py27_0         1.8 MB
    vs2008_runtime-9.00.30729.1|       hfaea7d5_1        1017 KB
    wincertstore-0.2           |   py27hf04cefb_0          13 KB
    python-2.7.15              |       h2880e7c_3        20.3 MB
    six-1.11.0                 |           py27_1          21 KB
    numpy-1.15.4               |   py27hbe4291b_0          36 KB
    mkl_fft-1.0.6              |   py27hac4a418_0         120 KB
    wheel-0.32.2               |           py27_0          52 KB
    ------------------------------------------------------------
                                           Total:        37.1 MB
 
The following NEW packages will be INSTALLED:    # 將要安裝的包
 
    blas:            1.0-mkl
    certifi:         2018.10.15-py27_0
    icc_rt:          2017.0.4-h97af966_0
    intel-openmp:    2019.0-118
    mkl:             2019.0-118
    mkl_fft:         1.0.6-py27hac4a418_0
    numpy:           1.15.4-py27hbe4291b_0
    numpy-root:      1.15.4-py27h2753ae9_0
    pandas:          0.23.4-py27h39f3610_0
    pip:             18.1-py27_0
    python:          2.7.15-h2880e7c_3
    python-dateutil: 2.7.5-py27_0
    pytz:            2018.7-py27_0
    setuptools:      40.5.0-py27_0
    six:             1.11.0-py27_1
    vc:              9-h7299396_1
    vs2008_runtime:  9.00.30729.1-hfaea7d5_1
    wheel:           0.32.2-py27_0
    wincertstore:    0.2-py27hf04cefb_0
 
Proceed ([y]/n)? y
 
 
Downloading and Extracting Packages
vc-9                 | 3 KB      | ######################################################################## | 100%
python-dateutil-2.7. | 275 KB    | ######################################################################## | 100%
pandas-0.23.4        | 8.8 MB    | ######################################################################## | 100%
pytz-2018.7          | 250 KB    | ######################################################################## | 100%
certifi-2018.10.15   | 139 KB    | ######################################################################## | 100%
setuptools-40.5.0    | 653 KB    | ######################################################################## | 100%
numpy-root-1.15.4    | 3.8 MB    | ######################################################################## | 100%
pip-18.1             | 1.8 MB    | ######################################################################## | 100%
vs2008_runtime-9.00. | 1017 KB   | ######################################################################## | 100%
wincertstore-0.2     | 13 KB     | ######################################################################## | 100%
python-2.7.15        | 20.3 MB   | ######################################################################## | 100%
six-1.11.0           | 21 KB     | ######################################################################## | 100%
numpy-1.15.4         | 36 KB     | ######################################################################## | 100%
mkl_fft-1.0.6        | 120 KB    | ######################################################################## | 100%
wheel-0.32.2         | 52 KB     | ######################################################################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use:
# > activate py27
#
# To deactivate an active environment, use:
# > deactivate
#
# * for power-users using bash, you must source
#
 
 
$ conda env list    # 顯示全部運行環境
# conda environments:
#
root                  *  D:\app\anaconda3    # 星號表示是當前運行環境
py27                  D:\app\anaconda3\envs\py27
 
 
$ source activate py27    # 進入py27運行環境
(py27)
 
 
$ conda env list
# conda environments:
#
root                     D:\app\anaconda3
py27               *  D:\app\anaconda3\envs\py27    # 星號表示是當前運行環境
 
(py27)
 
 
$ py --version
Python 3.7.1
(py27)    # 括號中顯示當前的運行環境
 
 
$ conda info  # 顯示conda信息
 
     active environment : py27
    active env location : D:\app\anaconda3\envs\py27
            shell level : 1
       user config file : C:\Users\WQBin\.condarc
 populated config files : C:\Users\WQBin\.condarc
          conda version : 4.5.11
    conda-build version : 3.16.2
         python version : 3.7.1.final.0
       root environment : D:\app\anaconda3  (writable)
           channel URLs : https://repo.anaconda.com/pkgs/main/win-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/free/win-64
                          https://repo.anaconda.com/pkgs/free/noarch
                          https://repo.anaconda.com/pkgs/r/win-64
                          https://repo.anaconda.com/pkgs/r/noarch
                          https://repo.anaconda.com/pkgs/pro/win-64
                          https://repo.anaconda.com/pkgs/pro/noarch
                          https://repo.anaconda.com/pkgs/msys2/win-64
                          https://repo.anaconda.com/pkgs/msys2/noarch
          package cache : D:\app\anaconda3\pkgs
                          C:\Users\WQBin\AppData\Local\conda\conda\pkgs
       envs directories : D:\app\anaconda3\envs
                          C:\Users\WQBin\AppData\Local\conda\conda\envs
                          C:\Users\WQBin\.conda\envs
               platform : win-64
             user-agent : conda/4.5.11 requests/2.20.0 CPython/3.7.1 Windows/7 Windows/6.1.7601
          administrator : False
             netrc file : None
           offline mode : False
 
(py27)
 
 
$ source deactivate    # 退出當前運行環境
 
 
$ conda env list
# conda environments:
#
root                  *  D:\app\anaconda3    # 星號表示是當前運行環境
py27                  D:\app\anaconda3\envs\py27
 
 
$ conda env remove --name py27    # 刪除運行環境
 
Remove all packages in environment D:\app\anaconda3\envs\py27:
 
 
## Package Plan ##
 
  environment location: D:\app\anaconda3\envs\py27
 
 
The following packages will be REMOVED:
 
    blas:            1.0-mkl
    certifi:         2018.10.15-py27_0
    icc_rt:          2017.0.4-h97af966_0
    intel-openmp:    2019.0-118
    mkl:             2019.0-118
    mkl_fft:         1.0.6-py27hac4a418_0
    numpy:           1.15.4-py27hbe4291b_0
    numpy-root:      1.15.4-py27h2753ae9_0
    pandas:          0.23.4-py27h39f3610_0
    pip:             18.1-py27_0
    python:          2.7.15-h2880e7c_3
    python-dateutil: 2.7.5-py27_0
    pytz:            2018.7-py27_0
    setuptools:      40.5.0-py27_0
    six:             1.11.0-py27_1
    vc:              9-h7299396_1
    vs2008_runtime:  9.00.30729.1-hfaea7d5_1
    wheel:           0.32.2-py27_0
    wincertstore:    0.2-py27hf04cefb_0
 
Proceed ([y]/n)? y
 
 
$ conda env list
# conda environments:
#
root                  *  D:\app\anaconda3
 
 
$
相關文章
相關標籤/搜索