Problem Description:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[[2],
[3,4],
[6,5,7],
[4,1,8,3]]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).算法Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.this
看過劉汝佳的《算法競賽入門經典》的同窗對這道題應該都不陌生,由於這是那本書講動規裏面舉的第一個案例,可能也是不少人第一次接觸動規時候的啓蒙題目。
對於這種問題維度較低,且無需尋徑的求最優解問題,直接推出遞推方程:\(M(i,j) = min(M(i+1,j),M(i+1,j+1)) + v(i,j)\),而後在題目給出的數據上實現遞推方程的搜索過程便可。
通常這種問題都有自底向上和自頂向下兩種遞推式,上述的遞推式是自底向上的形式。另一種懶得想了。spa
//Solution class Solution120 { public int minimumTotal(List<List<Integer>> triangle) { for(int i=triangle.size()-2; i>=0; i--) { List<Integer> nc = triangle.get(i); List<Integer> lc = triangle.get(i+1); for(int j=0; j<nc.size(); j++) { nc.set(j, nc.get(j)+(lc.get(j)<lc.get(j+1)?lc.get(j):lc.get(j+1))); } } return triangle.get(0).get(0); } }