咱們可使用本身編寫的核函數:python
*注意,若是使用precomputed模式,也就是不傳入函數,而直接傳入計算後的核,那麼參與這個覈計算的數據集要包含訓練集和測試集git
# coding=utf-8 import numpy as np from sklearn import svm, datasets from matplotlib.pylab import plt from sklearn.utils import shuffle from sklearn.metrics import zero_one_loss if __name__ == "__main__": # 定義數據集 X_train = np.array([[0.3, 0.4], [0, 0], [1, 1], [1.1, 1.1]]) y_train = [0, 0, 1, 1] X_test = np.array([[0.2, 0.2], [0, 3], [1, -1], [5, 5]]) y_test = [0, 1, 0, 1] # # # # 測試1 def my_kernel(X, Y): # 自定義核函數 return np.dot(X, Y.T) clf = svm.SVC(kernel=my_kernel) clf.fit(X_train, y_train) result = clf.predict(X_test) print(result) # # # # # # # # 測試2:外部覈計算 clf = svm.SVC(kernel='precomputed') gram = np.dot(X_train, X_train.T) # linear kernel computation,先在外部計算核 clf.fit(gram, y_train) # predict on training examples # 當用precomputed模式的時候,測試集和訓練集都要包含在kernel裏面。 gram_test = np.dot(X_test, X_train.T) result = clf.predict(gram_test) print(result) # # # # # # # # # import some data to play with iris = datasets.load_iris() X_train = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y_train = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X_train, Y_train) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. x_min, x_max = X_train[:, 0].min() - 1, X_train[:, 0].max() + 1 y_min, y_max = X_train[:, 1].min() - 1, X_train[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # # # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X_train[:, 0], X_train[:, 1], c=Y_train, cmap=plt.cm.Paired, edgecolors='k') plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show() # # # # # # # # # # # # ------ 正確的姿式 -------------- digits = datasets.load_digits() X, y = shuffle(digits.data, digits.target) X_train, X_test = X[:1000, :], X[1000:, :] y_train, y_test = y[:1000], y[1000:] svc = svm.SVC(kernel='precomputed') kernel_train = np.dot(X_train, X_train.T) # linear kernel svc.fit(kernel_train, y_train) # kernel_test = np.dot(X_test, X_train[svc.support_, :].T) kernel_test = np.dot(X_test, X_train.T) y_pred = svc.predict(kernel_test) # print(zero_one_score(y_test, y_pred)) print(zero_one_loss(y_test, y_pred))
其它參考:函數
一、Gram matrix:style transfer 當中,什麼是風格,存在本身特性的才叫作風格。所以如何去度量這個本身的特性勒,本身的特色越突出,別人的越不突出最好。測試
Gram Matrix實際上可看作是feature之間的偏愛協方差矩陣(即沒有減去均值的協方差矩陣),在feature map中,每個數字都來自於一個特定濾波器在特定位置的卷積,所以每一個數字就表明一個特徵的強度,而Gram計算的其實是兩兩特徵之間的相關性,哪兩個特徵是同時出現的,哪兩個是此消彼長的等等,同時,Gram的對角線元素,還體現了每一個特徵在圖像中出現的量,所以,Gram有助於把握整個圖像的大致風格。有了表示風格的Gram Matrix,要度量兩個圖像風格的差別,只需比較他們Gram Matrix的差別便可。this