android 休眠喚醒機制分析(二) — early_suspend linux
early_suspend
是Android休眠流程的第一階段即淺度休眠,不會受到wake_lock的阻止,通常用於關閉lcd、tp等設備爲運行的應用節約電能。Android的PowerManagerService
會根據用戶的操做狀況調整電源狀態,若是須要休眠則會調用到HAL層的set_screen_state()
接口,在set_screen_state()
中會向/sys/power/state
節點寫入"mem"值讓驅動層開始進入休眠流程。android
1、休眠喚醒機制及其用戶空間接口
Linux系統支持以下休眠喚醒等級緩存
const char *const pm_states[PM_SUSPEND_MAX] = { #ifdef CONFIG_EARLYSUSPEND [PM_SUSPEND_ON] = "on", #endif [PM_SUSPEND_STANDBY] = "standby", [PM_SUSPEND_MEM] = "mem", };
但在Android中通常只支持"on"和"mem",其中"on"爲喚醒設備,"mem"爲休眠設備。/sys/power/state
節點的讀寫操做以下:函數
static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { char *s = buf; #ifdef CONFIG_SUSPEND int i; for (i = 0; i < PM_SUSPEND_MAX; i++) { if (pm_states[i] && valid_state(i)) s += sprintf(s,"%s ", pm_states[i]); // 打印系統支持的休眠等級 } #endif #ifdef CONFIG_HIBERNATION s += sprintf(s, "%s\n", "disk"); #else if (s != buf) /* convert the last space to a newline */ *(s-1) = '\n'; #endif return (s - buf); } static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t n) { #ifdef CONFIG_SUSPEND #ifdef CONFIG_EARLYSUSPEND suspend_state_t state = PM_SUSPEND_ON; #else suspend_state_t state = PM_SUSPEND_STANDBY; #endif const char * const *s; #endif char *p; int len; int error = -EINVAL; p = memchr(buf, '\n', n); len = p ? p - buf : n; /* First, check if we are requested to hibernate */ if (len == 4 && !strncmp(buf, "disk", len)) { error = hibernate(); goto Exit; } #ifdef CONFIG_SUSPEND for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) { if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) break; } if (state < PM_SUSPEND_MAX && *s) #ifdef CONFIG_EARLYSUSPEND if (state == PM_SUSPEND_ON || valid_state(state)) { error = 0; request_suspend_state(state); // 請求進入android的休眠流程 } #else error = enter_state(state); // linux的標準休眠流程 #endif #endif Exit: return error ? error : n; } power_attr(state);
其中state_show()
爲節點的讀函數,主要打印出系統支持的休眠等級;state_store()
爲節點的寫函數,根據參數請求休眠或者喚醒流程。節點的建立代碼以下:url
static struct attribute * g[] = { &state_attr.attr, // state節點 #ifdef CONFIG_PM_TRACE &pm_trace_attr.attr, #endif #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG) &pm_test_attr.attr, // pm_test節點 #endif #ifdef CONFIG_USER_WAKELOCK &wake_lock_attr.attr, // wake_lock節點 &wake_unlock_attr.attr, // wake_unlock節點 #endif NULL, }; static struct attribute_group attr_group = { .attrs = g, }; static int __init pm_init(void) { int error = pm_start_workqueue(); if (error) return error; power_kobj = kobject_create_and_add("power", NULL); // 建立power節點 if (!power_kobj) return -ENOMEM; return sysfs_create_group(power_kobj, &attr_group); // 建立一組屬性節點 } core_initcall(pm_init);
2、early_suspend 實現
一、early_suspend 定義、接口及其用法
enum { EARLY_SUSPEND_LEVEL_BLANK_SCREEN = 50, EARLY_SUSPEND_LEVEL_STOP_DRAWING = 100, EARLY_SUSPEND_LEVEL_DISABLE_FB = 150, }; struct early_suspend { #ifdef CONFIG_HAS_EARLYSUSPEND struct list_head link; // 鏈表節點 int level; // 優先等級 void (*suspend)(struct early_suspend *h); void (*resume)(struct early_suspend *h); #endif };
能夠看到early_suspend
由兩個函數指針、鏈表節點、優先等級組成;內核默認定義了3個優先等級,在suspend的時候先執行優先等級低的handler,在resume的時候則先執行等級高的handler,用戶能夠定義本身的優先等級;early_suspend
向內核空間提供了2個接口用於註冊和註銷handler:spa
void register_early_suspend(struct early_suspend *handler); void unregister_early_suspend(struct early_suspend *handler);
其中register_early_suspend()
用於註冊,unregister_early_suspend
用於註銷;通常early_suspend
的使用方式以下:.net
ts->earlysuspend.suspend = sitronix_i2c_suspend_early; ts->earlysuspend.resume = sitronix_i2c_resume_late; ts->earlysuspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN; register_early_suspend(&ts->earlysuspend);
設置好suspend
和resume
接口,定義優先等級,而後註冊結構便可。hibernate
二、初始化信息
咱們看一下early_suspend
須要用到的一些數據:線程
static DEFINE_MUTEX(early_suspend_lock); static LIST_HEAD(early_suspend_handlers); // 初始化淺度休眠鏈表 // 聲明3個工做隊列用於同步、淺度休眠和喚醒 static void early_sys_sync(struct work_struct *work); static void early_suspend(struct work_struct *work); static void late_resume(struct work_struct *work); static DECLARE_WORK(early_sys_sync_work,early_sys_sync); static DECLARE_WORK(early_suspend_work, early_suspend); static DECLARE_WORK(late_resume_work, late_resume); static DEFINE_SPINLOCK(state_lock); enum { SUSPEND_REQUESTED = 0x1, // 當前正在請求淺度休眠 SUSPENDED = 0x2, // 淺度休眠完成 SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED, }; static int state;
初始化了一個鏈表early_suspend_handlers用於管理early_suspend,還定義讀寫鏈表用到的互斥體;另外還聲明瞭3個工做隊列,分別用於緩存同步、淺度休眠和喚醒;還聲明瞭early_suspend操做的3個狀態。debug
三、register_early_suspend 和 unregister_early_suspend
void register_early_suspend(struct early_suspend *handler) { struct list_head *pos; mutex_lock(&early_suspend_lock); // 遍歷淺度休眠鏈表 list_for_each(pos, &early_suspend_handlers) { struct early_suspend *e; e = list_entry(pos, struct early_suspend, link); // 判斷當前節點的優先等級是否大於handler的優先等級 // 以此決定handler在鏈表中的順序 if (e->level > handler->level) break; } // 將handler加入當前節點以前,優先等級越低越靠前 list_add_tail(&handler->link, pos); if ((state & SUSPENDED) && handler->suspend) handler->suspend(handler); mutex_unlock(&early_suspend_lock); } EXPORT_SYMBOL(register_early_suspend);
註冊的流程比較簡單,首先遍歷鏈表,依次比較每一個節點的優先等級,若是遇到優先等級比新節點優先等級高則跳出,而後將新節點加入優先等級較高的節點前面,這樣就確保了鏈表是優先等級低在前高在後的順序;在將節點加入鏈表後查看當前狀態是否爲淺度休眠完成狀態,若是是則執行handler的suspend函數。
四、request_suspend_state
前面咱們看到用戶空間在寫/sys/power/state
節點的時候會執行request_suspend_state()
函數,該函數代碼以下:
void request_suspend_state(suspend_state_t new_state) { unsigned long irqflags; int old_sleep; spin_lock_irqsave(&state_lock, irqflags); old_sleep = state & SUSPEND_REQUESTED; // 打印當前狀態 if (debug_mask & DEBUG_USER_STATE) { struct timespec ts; struct rtc_time tm; getnstimeofday(&ts); rtc_time_to_tm(ts.tv_sec, &tm); pr_info("request_suspend_state: %s (%d->%d) at %lld " "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n", new_state != PM_SUSPEND_ON ? "sleep" : "wakeup", requested_suspend_state, new_state, ktime_to_ns(ktime_get()), tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec); } // 若是新狀態是休眠狀態 if (!old_sleep && new_state != PM_SUSPEND_ON) { state |= SUSPEND_REQUESTED; pr_info("sys_sync_work_queue early_sys_sync_work.\n"); // 執行緩存同步與淺度休眠的工做隊列 queue_work(sys_sync_work_queue, &early_sys_sync_work); queue_work(suspend_work_queue, &early_suspend_work); } else if (old_sleep && new_state == PM_SUSPEND_ON) { // 若是新狀態是喚醒狀態 state &= ~SUSPEND_REQUESTED; // 激活內核鎖 wake_lock(&main_wake_lock); // 執行淺度喚醒的工做隊列 queue_work(suspend_work_queue, &late_resume_work); } // 更新全局狀態 requested_suspend_state = new_state; spin_unlock_irqrestore(&state_lock, irqflags); }
函數首先打印出當前狀態變化的log,而後判斷新狀態,若是是休眠狀態則置位SUSPEND_REQUESTED標誌,而後將同步緩存、淺度休眠工做隊列加入相應的內核線程執行;若是新狀態是喚醒則首先將main_wake_lock激活,而後再將淺度喚醒工做隊列加入內核線程執行;最後更新全局狀態變量,由於提供了一個內核空間接口用於獲取當前休眠喚醒狀態:
// 返回系統狀態值 suspend_state_t get_suspend_state(void) { return requested_suspend_state; }
五、early_suspend_work、late_resume_work 和 early_sys_sync
static void early_suspend(struct work_struct *work) { struct early_suspend *pos; unsigned long irqflags; int abort = 0; mutex_lock(&early_suspend_lock); spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED) // 判斷當前狀態是否在請求淺度休眠 state |= SUSPENDED; // 若是是則置位SUSPENDED else abort = 1; spin_unlock_irqrestore(&state_lock, irqflags); if (abort) { // 取消early_suspend if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: abort, state %d\n", state); mutex_unlock(&early_suspend_lock); goto abort; } if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: call handlers\n"); // 遍歷淺度休眠鏈表並執行其中全部suspend函數 // 執行順序根據優先等級而定,等級越低越先執行 list_for_each_entry(pos, &early_suspend_handlers, link) { if (pos->suspend != NULL) pos->suspend(pos); } mutex_unlock(&early_suspend_lock); if (debug_mask & DEBUG_SUSPEND) pr_info("early_suspend: sync\n"); /* Remove sys_sync from early_suspend, and use work queue to complete sys_sync */ //sys_sync(); abort: spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPEND_REQUESTED_AND_SUSPENDED) wake_unlock(&main_wake_lock); spin_unlock_irqrestore(&state_lock, irqflags); }
在suspend流程中首先判斷當前狀態是否爲SUSPEND_REQUESTED,若是是則置位SUSPENDED標誌,若是不是則取消suspend流程;而後遍歷淺度休眠鏈表,從鏈表頭部到尾部依次調用各節點的suspend()函數,執行完後判斷當前狀態是否爲SUSPEND_REQUESTED_AND_SUSPENDED
,若是是則釋放main_wake_lock,當前系統中若是隻存在main_wake_lock這個有效鎖,則會在wake_unlock()
裏面啓動深度休眠線程,若是還有其餘其餘wake_lock則保持當前狀態。
static void late_resume(struct work_struct *work) { struct early_suspend *pos; unsigned long irqflags; int abort = 0; mutex_lock(&early_suspend_lock); spin_lock_irqsave(&state_lock, irqflags); if (state == SUSPENDED) // 清除淺度休眠完成標誌 state &= ~SUSPENDED; else abort = 1; spin_unlock_irqrestore(&state_lock, irqflags); if (abort) { if (debug_mask & DEBUG_SUSPEND) pr_info("late_resume: abort, state %d\n", state); goto abort; } if (debug_mask & DEBUG_SUSPEND) pr_info("late_resume: call handlers\n"); // 反向遍歷淺度休眠鏈表並執行其中全部resume函數 // 執行順序根據優先等級而定,等級越高越先執行 list_for_each_entry_reverse(pos, &early_suspend_handlers, link) if (pos->resume != NULL) pos->resume(pos); if (debug_mask & DEBUG_SUSPEND) pr_info("late_resume: done\n"); abort: mutex_unlock(&early_suspend_lock); }
在resume流程中一樣首先判斷當前狀態是否爲SUSPENDED,若是是則清除SUSPENDED標誌,而後反向遍歷淺度休眠鏈表,按照優先等級從高到低的順序執行節點的resume()函數。
static void early_sys_sync(struct work_struct *work) { wake_lock(&sys_sync_wake_lock); sys_sync(); wake_unlock(&sys_sync_wake_lock); }
內核專門爲緩存同步創建了一個線程,同時還建立了sys_sync_wake_lock
防止在同步緩存時系統進入深度休眠。