go http 服務器編程

1. 初識

http 是典型的 C/S 架構,客戶端向服務端發送請求(request),服務端作出應答(response)。html

golang 的標準庫 net/http 提供了 http 編程有關的接口,封裝了內部TCP鏈接和報文解析的複雜瑣碎的細節,使用者只須要和 http.request 和 http.ResponseWriter 兩個對象交互就行。也就是說,咱們只要寫一個 handler,請求會經過參數傳遞進來,而它要作的就是根據請求的數據作處理,把結果寫到 Response 中。廢話很少說,來看看 hello world 程序有多簡單吧!git

package main

import (
	"io"
	"net/http"
)

type helloHandler struct{}

func (h *helloHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
	w.Write([]byte("Hello, world!"))
}

func main() {
	http.Handle("/", &helloHandler{})
	http.ListenAndServe(":12345", nil)
}

運行 go run hello_server.go,咱們的服務器就會監聽在本地的 12345 端口,對全部的請求都會返回 hello, world!github

正如上面程序展現的那樣,咱們只要實現的一個 Handler,它的接口原型是(也就是說只要實現了 ServeHTTP 方法的對象均可以做爲 Handler):golang

type Handler interface {
    ServeHTTP(ResponseWriter, *Request)
}

而後,註冊到對應的路由路徑上就 OK 了。正則表達式

http.HandleFunc接受兩個參數:第一個參數是字符串表示的 url 路徑,第二個參數是該 url 實際的處理對象。編程

http.ListenAndServe 監聽在某個端口,啓動服務,準備接受客戶端的請求(第二個參數這裏設置爲 nil,這裏也不要糾結什麼意思,後面會有講解)。每次客戶端有請求的時候,把請求封裝成 http.Request,調用對應的 handler 的 ServeHTTP 方法,而後把操做後的http.ResponseWriter 解析,返回到客戶端。json

2. 封裝

上面的代碼沒有什麼問題,可是有一個不便:每次寫 Handler 的時候,都要定義一個類型,而後編寫對應的 ServeHTTP 方法,這個步驟對於全部 Handler 都是同樣的。重複的工做老是能夠抽象出來,net/http 也正這麼作了,它提供了 http.HandleFunc 方法,容許直接把特定類型的函數做爲 handler。上面的代碼能夠改爲:後端

package main

import (
	"io"
	"net/http"
)

func helloHandler(w http.ResponseWriter, req *http.Request) {
	io.WriteString(w, "hello, world!\n")
}

func main() {
	http.HandleFunc("/", helloHandler)
	http.ListenAndServe(":12345", nil)
}

其實,HandleFunc 只是一個適配器,瀏覽器

// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as HTTP handlers.  If f is a function
// with the appropriate signature, HandlerFunc(f) is a
// Handler object that calls f.
type HandlerFunc func(ResponseWriter, *Request)

// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
	f(w, r)
}

自動給 f 函數添加了 HandlerFunc 這個殼,最終調用的仍是 ServerHTTP,只不過會直接使用 f(w, r)。這樣封裝的好處是:使用者能夠專一於業務邏輯的編寫,省去了不少重複的代碼處理邏輯。若是隻是簡單的 Handler,會直接使用函數;若是是須要傳遞更多信息或者有複雜的操做,會使用上部分的方法。服務器

若是須要咱們本身寫的話,是這樣的:

package main

import (
	"io"
	"net/http"
)

func helloHandler(w http.ResponseWriter, req *http.Request) {
	io.WriteString(w, "hello, world!\n")
}

func main() {
    // 經過 HandlerFunc 把函數轉換成 Handler 接口的實現對象
    hh := http.HandlerFunc(helloHandler)
	http.Handle("/", hh)
	http.ListenAndServe(":12345", nil)
}

3. 默認

大部分的服務器邏輯都須要使用者編寫對應的 Handler,不過有些 Handler 使用頻繁,所以 net/http 提供了它們的實現。好比負責文件 hosting 的 FileServer、負責 404 的NotFoundHandler 和 負責重定向的RedirectHandler。下面這個簡單的例子,把當前目錄全部文件 host 到服務端:

package main

import (
	"net/http"
)

func main() {
	http.ListenAndServe(":12345", http.FileServer(http.Dir(".")))
}

強大吧!只要一行邏輯代碼就能實現一個簡單的靜態文件服務器。從這裏能夠看出一件事:http.ListenAndServe 第二個參數就是一個 Handler 函數(請記住這一點,後面有些內容依賴於這個)。

運行這個程序,在瀏覽器中打開 http://127.0.0.1:12345,能夠看到全部的文件,點擊對應的文件還能看到它的內容。

其餘兩個 Handler,這裏就再也不舉例子了,讀者能夠自行參考文檔。

4. 路由

雖然上面的代碼已經工做,而且能實現不少功能,可是實際開發中,HTTP 接口會有許多的 URL 和對應的 Handler。這裏就要講 net/http 的另一個重要的概念:ServeMuxMux是 multiplexor 的縮寫,就是多路傳輸的意思(請求傳過來,根據某種判斷,分流到後端多個不一樣的地方)。ServeMux 能夠註冊多了 URL 和 handler 的對應關係,並自動把請求轉發到對應的 handler 進行處理。咱們仍是來看例子吧:

package main

import (
	"io"
	"net/http"
)

func helloHandler(w http.ResponseWriter, r *http.Request) {
	io.WriteString(w, "Hello, world!\n")
}

func echoHandler(w http.ResponseWriter, r *http.Request) {
	io.WriteString(w, r.URL.Path)
}

func main() {
	mux := http.NewServeMux()
	mux.HandleFunc("/hello", helloHandler)
	mux.HandleFunc("/", echoHandler)

	http.ListenAndServe(":12345", mux)
}

這個服務器的功能也很簡單:若是在請求的 URL 是 /hello,就返回 hello, world!;不然就返回 URL 的路徑,路徑是從請求對象 http.Requests 中提取的。

這段代碼和以前的代碼有兩點區別:

  1. 經過 NewServeMux 生成了 ServerMux 結構,URL 和 handler 是經過它註冊的
  2. http.ListenAndServe 方法第二個參數變成了上面的 mux 變量

還記得咱們以前說過,http.ListenAndServe 第二個參數應該是 Handler 類型的變量嗎?這裏爲何能傳過來 ServeMux?嗯,估計你也猜到啦:ServeMux 也是是 Handler 接口的實現,也就是說它實現了 ServeHTTP 方法,咱們來看一下:

type ServeMux struct {
        // contains filtered or unexported fields
}

func NewServeMux() *ServeMux
func (mux *ServeMux) Handle(pattern string, handler Handler)
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string)
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request)

哈!果真,這裏的方法咱們大都很熟悉,除了 Handler() 返回某個請求的 Handler。Handle 和 HandleFunc 這兩個方法 net/http 也提供了,後面咱們會說明它們之間的關係。而 ServeHTTP 就是 ServeMux 的核心處理邏輯:根據傳遞過來的 Request,匹配以前註冊的 URL 和處理函數,找到最匹配的項,進行處理。能夠說ServeMux 是個特殊的 Handler,它負責路由和調用其餘後端 Handler 的處理方法。

關於ServeMux ,有幾點要說明:

  • URL 分爲兩種,末尾是 /:表示一個子樹,後面能夠跟其餘子路徑; 末尾不是 /,表示一個葉子,固定的路徑
  • / 結尾的 URL 能夠匹配它的任何子路徑,好比 /images 會匹配 /images/cute-cat.jpg
  • 它採用最長匹配原則,若是有多個匹配,必定採用匹配路徑最長的那個進行處理
  • 若是沒有找到任何匹配項,會返回 404 錯誤
  • ServeMux 也會識別和處理 . 和 ..,正確轉換成對應的 URL 地址

你可能會有疑問?咱們之間爲何沒有使用 ServeMux 就能實現路徑功能?那是由於net/http 在後臺默認建立使用了 DefaultServeMux

5. 深刻

嗯,上面基本覆蓋了編寫 HTTP 服務端須要的全部內容。這部分就分析一下,它們的源碼實現,加深理解,之後遇到疑惑也能經過源碼來定位和解決。

Server

首先來看 http.ListenAndServe():

func ListenAndServe(addr string, handler Handler) error {
	server := &Server{Addr: addr, Handler: handler}
	return server.ListenAndServe()
}

這個函數其實也是一層封裝,建立了 Server 結構,並調用它的 ListenAndServe 方法,那咱們就跟進去看看:

// A Server defines parameters for running an HTTP server.
// The zero value for Server is a valid configuration.
type Server struct {
	Addr           string        // TCP address to listen on, ":http" if empty
	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
	......
}

// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.  If
// srv.Addr is blank, ":http" is used.
func (srv *Server) ListenAndServe() error {
	addr := srv.Addr
	if addr == "" {
		addr = ":http"
	}
	ln, err := net.Listen("tcp", addr)
	if err != nil {
		return err
	}
	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}

Server 保存了運行 HTTP 服務須要的參數,調用 net.Listen 監聽在對應的 tcp 端口,tcpKeepAliveListener 設置了 TCP 的 KeepAlive 功能,最後調用 srv.Serve()方法開始真正的循環邏輯。咱們再跟進去看看 Serve 方法:

// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each.  The service goroutines read requests and
// then call srv.Handler to reply to them.
func (srv *Server) Serve(l net.Listener) error {
	defer l.Close()
	var tempDelay time.Duration // how long to sleep on accept failure
    // 循環邏輯,接受請求並處理
	for {
         // 有新的鏈接
		rw, e := l.Accept()
		if e != nil {
			if ne, ok := e.(net.Error); ok && ne.Temporary() {
				if tempDelay == 0 {
					tempDelay = 5 * time.Millisecond
				} else {
					tempDelay *= 2
				}
				if max := 1 * time.Second; tempDelay > max {
					tempDelay = max
				}
				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
				time.Sleep(tempDelay)
				continue
			}
			return e
		}
		tempDelay = 0
         // 建立 Conn 鏈接
		c, err := srv.newConn(rw)
		if err != nil {
			continue
		}
		c.setState(c.rwc, StateNew) // before Serve can return
         // 啓動新的 goroutine 進行處理
		go c.serve()
	}
}

最上面的註釋也說明了這個方法的主要功能:

  • 接受 Listener l 傳遞過來的請求
  • 爲每一個請求建立 goroutine 進行後臺處理
  • goroutine 會讀取請求,調用 srv.Handler
func (c *conn) serve() {
	origConn := c.rwc // copy it before it's set nil on Close or Hijack

  	...

	for {
		w, err := c.readRequest()
		if c.lr.N != c.server.initialLimitedReaderSize() {
			// If we read any bytes off the wire, we're active.
			c.setState(c.rwc, StateActive)
		}

         ...

		// HTTP cannot have multiple simultaneous active requests.[*]
		// Until the server replies to this request, it can't read another,
		// so we might as well run the handler in this goroutine.
		// [*] Not strictly true: HTTP pipelining.  We could let them all process
		// in parallel even if their responses need to be serialized.
		serverHandler{c.server}.ServeHTTP(w, w.req)

		w.finishRequest()
		if w.closeAfterReply {
			if w.requestBodyLimitHit {
				c.closeWriteAndWait()
			}
			break
		}
		c.setState(c.rwc, StateIdle)
	}
}

看到上面這段代碼 serverHandler{c.server}.ServeHTTP(w, w.req)這一句了嗎?它會調用最先傳遞給 Server 的 Handler 函數:

func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
	handler := sh.srv.Handler
	if handler == nil {
		handler = DefaultServeMux
	}
	if req.RequestURI == "*" && req.Method == "OPTIONS" {
		handler = globalOptionsHandler{}
	}
	handler.ServeHTTP(rw, req)
}

哇!這裏看到 DefaultServeMux 了嗎?若是沒有 handler 爲空,就會使用它。handler.ServeHTTP(rw, req),Handler 接口都要實現 ServeHTTP 這個方法,由於這裏就要被調用啦。

也就是說,不管如何,最終都會用到 ServeMux,也就是負責 URL 路由的傢伙。前面也已經說過,它的 ServeHTTP 方法就是根據請求的路徑,把它轉交給註冊的 handler 進行處理。此次,咱們就在源碼層面一探究竟。

ServeMux

咱們已經知道,ServeMux 會以某種方式保存 URL 和 Handlers 的對應關係,下面咱們就從代碼層面來解開這個祕密:

type ServeMux struct {
	mu    sync.RWMutex
    m     map[string]muxEntry  // 存放路由信息的字典!\(^o^)/
	hosts bool // whether any patterns contain hostnames
}

type muxEntry struct {
	explicit bool
	h        Handler
	pattern  string
}

沒錯,數據結構也比較直觀,和咱們想象的差很少,路由信息保存在字典中,接下來就看看幾個重要的操做:路由信息是怎麼註冊的?ServeHTTP 方法究竟是怎麼作的?路由查找過程是怎樣的?

// Handle registers the handler for the given pattern.
// If a handler already exists for pattern, Handle panics.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
	mux.mu.Lock()
	defer mux.mu.Unlock()

    // 邊界狀況處理
	if pattern == "" {
		panic("http: invalid pattern " + pattern)
	}
	if handler == nil {
		panic("http: nil handler")
	}
	if mux.m[pattern].explicit {
		panic("http: multiple registrations for " + pattern)
	}

    // 建立 `muxEntry` 並添加到路由字典中
	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}

	if pattern[0] != '/' {
		mux.hosts = true
	}

    // 這是一個頗有用的小技巧,若是註冊了 `/tree/`, `serveMux` 會自動添加一個 `/tree` 的路徑並重定向到 `/tree/`。固然這個 `/tree` 路徑會被用戶顯示的路由信息覆蓋。
	// Helpful behavior:
	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
	// It can be overridden by an explicit registration.
	n := len(pattern)
	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
		// If pattern contains a host name, strip it and use remaining
		// path for redirect.
		path := pattern
		if pattern[0] != '/' {
			// In pattern, at least the last character is a '/', so
			// strings.Index can't be -1.
			path = pattern[strings.Index(pattern, "/"):]
		}
		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
	}
}

路由註冊沒有什麼特殊的地方,很簡單,也符合咱們的預期,注意最後一段代碼對相似/tree URL 重定向的處理。

// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
	if r.RequestURI == "*" {
		if r.ProtoAtLeast(1, 1) {
			w.Header().Set("Connection", "close")
		}
		w.WriteHeader(StatusBadRequest)
		return
	}
	h, _ := mux.Handler(r)
	h.ServeHTTP(w, r)
}

好吧,ServeHTTP 也只是經過 mux.Handler(r) 找到請求對應的 handler,調用它的ServeHTTP 方法,代碼比較簡單咱們就顯示了,它最終會調用 mux.match() 方法,咱們來看一下它的實現:

// Does path match pattern?
func pathMatch(pattern, path string) bool {
	if len(pattern) == 0 {
		// should not happen
		return false
	}
	n := len(pattern)
	if pattern[n-1] != '/' {
		return pattern == path
	}
    // 匹配的邏輯很簡單,path 前面的字符和 pattern 同樣就是匹配
	return len(path) >= n && path[0:n] == pattern
}

// Find a handler on a handler map given a path string
// Most-specific (longest) pattern wins
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
	var n = 0
	for k, v := range mux.m {
		if !pathMatch(k, path) {
			continue
		}
         // 最長匹配的邏輯在這裏
		if h == nil || len(k) > n {
			n = len(k)
			h = v.h
			pattern = v.pattern
		}
	}
	return
}

match 會遍歷路由信息字典,找到全部匹配該路徑最長的那個。路由部分的代碼解釋就到這裏了,最後回答上面的一個問題:http.HandleFunc 和 ServeMux.HandlerFunc 是什麼關係?

// Handle registers the handler for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }

// HandleFunc registers the handler function for the given pattern
// in the DefaultServeMux.
// The documentation for ServeMux explains how patterns are matched.
func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
	DefaultServeMux.HandleFunc(pattern, handler)
}

原來是直接經過 DefaultServeMux 調用對應的方法,到這裏上面的一切都串起來了!

Request

最後一部分,要講講 Handler 函數接受的兩個參數:http.Request 和http.ResponseWriter

Request 就是封裝好的客戶端請求,包括 URL,method,header 等等全部信息,以及一些方便使用的方法:

// A Request represents an HTTP request received by a server
// or to be sent by a client.
//
// The field semantics differ slightly between client and server
// usage. In addition to the notes on the fields below, see the
// documentation for Request.Write and RoundTripper.
type Request struct {
	// Method specifies the HTTP method (GET, POST, PUT, etc.).
	// For client requests an empty string means GET.
	Method string

	// URL specifies either the URI being requested (for server
	// requests) or the URL to access (for client requests).
	//
	// For server requests the URL is parsed from the URI
	// supplied on the Request-Line as stored in RequestURI.  For
	// most requests, fields other than Path and RawQuery will be
	// empty. (See RFC 2616, Section 5.1.2)
	//
	// For client requests, the URL's Host specifies the server to
	// connect to, while the Request's Host field optionally
	// specifies the Host header value to send in the HTTP
	// request.
	URL *url.URL

	// The protocol version for incoming requests.
	// Client requests always use HTTP/1.1.
	Proto      string // "HTTP/1.0"
	ProtoMajor int    // 1
	ProtoMinor int    // 0

	// A header maps request lines to their values.
	// If the header says
	//
	//	accept-encoding: gzip, deflate
	//	Accept-Language: en-us
	//	Connection: keep-alive
	//
	// then
	//
	//	Header = map[string][]string{
	//		"Accept-Encoding": {"gzip, deflate"},
	//		"Accept-Language": {"en-us"},
	//		"Connection": {"keep-alive"},
	//	}
	//
	// HTTP defines that header names are case-insensitive.
	// The request parser implements this by canonicalizing the
	// name, making the first character and any characters
	// following a hyphen uppercase and the rest lowercase.
	//
	// For client requests certain headers are automatically
	// added and may override values in Header.
	//
	// See the documentation for the Request.Write method.
	Header Header

	// Body is the request's body.
	//
	// For client requests a nil body means the request has no
	// body, such as a GET request. The HTTP Client's Transport
	// is responsible for calling the Close method.
	//
	// For server requests the Request Body is always non-nil
	// but will return EOF immediately when no body is present.
	// The Server will close the request body. The ServeHTTP
	// Handler does not need to.
	Body io.ReadCloser

	// ContentLength records the length of the associated content.
	// The value -1 indicates that the length is unknown.
	// Values >= 0 indicate that the given number of bytes may
	// be read from Body.
	// For client requests, a value of 0 means unknown if Body is not nil.
	ContentLength int64

	// TransferEncoding lists the transfer encodings from outermost to
	// innermost. An empty list denotes the "identity" encoding.
	// TransferEncoding can usually be ignored; chunked encoding is
	// automatically added and removed as necessary when sending and
	// receiving requests.
	TransferEncoding []string

	// Close indicates whether to close the connection after
	// replying to this request (for servers) or after sending
	// the request (for clients).
	Close bool

	// For server requests Host specifies the host on which the
	// URL is sought. Per RFC 2616, this is either the value of
	// the "Host" header or the host name given in the URL itself.
	// It may be of the form "host:port".
	//
	// For client requests Host optionally overrides the Host
	// header to send. If empty, the Request.Write method uses
	// the value of URL.Host.
	Host string

	// Form contains the parsed form data, including both the URL
	// field's query parameters and the POST or PUT form data.
	// This field is only available after ParseForm is called.
	// The HTTP client ignores Form and uses Body instead.
	Form url.Values

	// PostForm contains the parsed form data from POST or PUT
	// body parameters.
	// This field is only available after ParseForm is called.
	// The HTTP client ignores PostForm and uses Body instead.
	PostForm url.Values

	// MultipartForm is the parsed multipart form, including file uploads.
	// This field is only available after ParseMultipartForm is called.
	// The HTTP client ignores MultipartForm and uses Body instead.
	MultipartForm *multipart.Form

	...

	// RemoteAddr allows HTTP servers and other software to record
	// the network address that sent the request, usually for
	// logging. This field is not filled in by ReadRequest and
	// has no defined format. The HTTP server in this package
	// sets RemoteAddr to an "IP:port" address before invoking a
	// handler.
	// This field is ignored by the HTTP client.
	RemoteAddr string
    ...
}

Handler 須要知道關於請求的任何信息,都要從這個對象中獲取,通常不會直接修改這個對象(除非你很是清楚本身在作什麼)!

ResponseWriter

ResponseWriter 是一個接口,定義了三個方法:

  • Header():返回一個 Header 對象,能夠經過它的 Set() 方法設置頭部,注意最終返回的頭部信息可能和你寫進去的不徹底相同,由於後續處理還可能修改頭部的值(好比設置Content-LengthContent-type 等操做)
  • Write(): 寫 response 的主體部分,好比 html 或者 json 的內容就是放到這裏的
  • WriteHeader():設置 status code,若是沒有調用這個函數,默認設置爲 http.StatusOK, 就是 200 狀態碼
// A ResponseWriter interface is used by an HTTP handler to
// construct an HTTP response.
type ResponseWriter interface {
	// Header returns the header map that will be sent by WriteHeader.
	// Changing the header after a call to WriteHeader (or Write) has
	// no effect.
	Header() Header

	// Write writes the data to the connection as part of an HTTP reply.
	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
	// before writing the data.  If the Header does not contain a
	// Content-Type line, Write adds a Content-Type set to the result of passing
	// the initial 512 bytes of written data to DetectContentType.
	Write([]byte) (int, error)

	// WriteHeader sends an HTTP response header with status code.
	// If WriteHeader is not called explicitly, the first call to Write
	// will trigger an implicit WriteHeader(http.StatusOK).
	// Thus explicit calls to WriteHeader are mainly used to
	// send error codes.
	WriteHeader(int)
}

實際上傳遞給 Handler 的對象是:

// A response represents the server side of an HTTP response.
type response struct {
	conn          *conn
	req           *Request // request for this response
	wroteHeader   bool     // reply header has been (logically) written
	wroteContinue bool     // 100 Continue response was written

	w  *bufio.Writer // buffers output in chunks to chunkWriter
	cw chunkWriter
	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter

	// handlerHeader is the Header that Handlers get access to,
	// which may be retained and mutated even after WriteHeader.
	// handlerHeader is copied into cw.header at WriteHeader
	// time, and privately mutated thereafter.
	handlerHeader Header
	...
	status        int   // status code passed to WriteHeader
    ...
}

它固然實現了上面提到的三個方法,具體代碼就不放到這裏了,感興趣的能夠本身去看。

6. 擴展

雖然 net/http 提供的各類功能已經知足基本需求了,可是不少時候還不夠方便,好比:

  • 不支持 URL 匹配,全部的路徑必須徹底匹配,不能捕獲 URL 中的變量,不夠靈活
  • 不支持 HTTP 方法匹配
  • 不支持擴展和嵌套,URL 處理都在都一個 ServeMux 變量中

雖然這些均可以本身手動去碼,但實在很不方便。這部分看看有哪些三方的包,都提供了哪些額外的功能。

alice

alice 的功能很簡單——把多個 handler 串聯起來,有請求過來的時候,逐個經過這個 handler 進行處理。

alice.New(Middleware1, Middleware2, Middleware3).Then(App)

Gorilla Mux

Gorilla 提供了不少網絡有關的組件, Mux 就是其中一個,負責 HTTP 的路由功能。這個組件彌補了上面提到的 ServeMux 的一些缺陷,支持的功能有:

  • 更多的匹配類型:HTTP 方法、query 字段、URL host 等
  • 支持正則表達式做爲 URL path 的一部分,也支持變量提取功能
  • 支持子路由,也就是路由的嵌套,SubRouter 能夠實現路由信息的傳遞
  • 而且和 ServeMux 徹底兼容
r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

httprouter

httprouter 和 mux 同樣,也是擴展了自帶 ServeMux 功能的路由庫。它的主要特色是速度快、內存使用少、可擴展性高(使用 radix tree 數據結構進行路由匹配,路由項不少的時候速度也很快)。

package main

import (
    "fmt"
    "github.com/julienschmidt/httprouter"
    "net/http"
    "log"
)

func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
    fmt.Fprint(w, "Welcome!\n")
}

func Hello(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {
    fmt.Fprintf(w, "hello, %s!\n", ps.ByName("name"))
}

func main() {
    router := httprouter.New()
    router.GET("/", Index)
    router.GET("/hello/:name", Hello)

    log.Fatal(http.ListenAndServe(":8080", router))
}

negroni

http middleware 庫,支持嵌套的中間件,可以和其餘路由庫兼容。同時它也自帶了很多 middleware 可使用,好比RecoveryLoggerStatic

router := mux.NewRouter()
router.HandleFunc("/", HomeHandler)

n := negroni.New(Middleware1, Middleware2)
// Or use a middleware with the Use() function
n.Use(Middleware3)
// router goes last
n.UseHandler(router)

http.ListenAndServe(":3001", n)

7. 參考

這篇文章參考瞭如下資料:

相關文章
相關標籤/搜索