http 是典型的 C/S 架構,客戶端向服務端發送請求(request),服務端作出應答(response)。html
golang 的標準庫 net/http
提供了 http 編程有關的接口,封裝了內部TCP鏈接和報文解析的複雜瑣碎的細節,使用者只須要和 http.request
和 http.ResponseWriter
兩個對象交互就行。也就是說,咱們只要寫一個 handler,請求會經過參數傳遞進來,而它要作的就是根據請求的數據作處理,把結果寫到 Response 中。廢話很少說,來看看 hello world 程序有多簡單吧!git
package main import ( "io" "net/http" ) type helloHandler struct{} func (h *helloHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) { w.Write([]byte("Hello, world!")) } func main() { http.Handle("/", &helloHandler{}) http.ListenAndServe(":12345", nil) }
運行 go run hello_server.go
,咱們的服務器就會監聽在本地的 12345
端口,對全部的請求都會返回 hello, world!
:github
正如上面程序展現的那樣,咱們只要實現的一個 Handler,它的接口原型是(也就是說只要實現了 ServeHTTP
方法的對象均可以做爲 Handler):golang
type Handler interface { ServeHTTP(ResponseWriter, *Request) }
而後,註冊到對應的路由路徑上就 OK 了。正則表達式
http.HandleFunc
接受兩個參數:第一個參數是字符串表示的 url 路徑,第二個參數是該 url 實際的處理對象。編程
http.ListenAndServe
監聽在某個端口,啓動服務,準備接受客戶端的請求(第二個參數這裏設置爲 nil
,這裏也不要糾結什麼意思,後面會有講解)。每次客戶端有請求的時候,把請求封裝成 http.Request
,調用對應的 handler 的 ServeHTTP
方法,而後把操做後的http.ResponseWriter
解析,返回到客戶端。json
上面的代碼沒有什麼問題,可是有一個不便:每次寫 Handler 的時候,都要定義一個類型,而後編寫對應的 ServeHTTP
方法,這個步驟對於全部 Handler 都是同樣的。重複的工做老是能夠抽象出來,net/http
也正這麼作了,它提供了 http.HandleFunc
方法,容許直接把特定類型的函數做爲 handler。上面的代碼能夠改爲:後端
package main import ( "io" "net/http" ) func helloHandler(w http.ResponseWriter, req *http.Request) { io.WriteString(w, "hello, world!\n") } func main() { http.HandleFunc("/", helloHandler) http.ListenAndServe(":12345", nil) }
其實,HandleFunc
只是一個適配器,瀏覽器
// The HandlerFunc type is an adapter to allow the use of // ordinary functions as HTTP handlers. If f is a function // with the appropriate signature, HandlerFunc(f) is a // Handler object that calls f. type HandlerFunc func(ResponseWriter, *Request) // ServeHTTP calls f(w, r). func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { f(w, r) }
自動給 f
函數添加了 HandlerFunc
這個殼,最終調用的仍是 ServerHTTP
,只不過會直接使用 f(w, r)
。這樣封裝的好處是:使用者能夠專一於業務邏輯的編寫,省去了不少重複的代碼處理邏輯。若是隻是簡單的 Handler,會直接使用函數;若是是須要傳遞更多信息或者有複雜的操做,會使用上部分的方法。服務器
若是須要咱們本身寫的話,是這樣的:
package main import ( "io" "net/http" ) func helloHandler(w http.ResponseWriter, req *http.Request) { io.WriteString(w, "hello, world!\n") } func main() { // 經過 HandlerFunc 把函數轉換成 Handler 接口的實現對象 hh := http.HandlerFunc(helloHandler) http.Handle("/", hh) http.ListenAndServe(":12345", nil) }
大部分的服務器邏輯都須要使用者編寫對應的 Handler,不過有些 Handler 使用頻繁,所以 net/http
提供了它們的實現。好比負責文件 hosting 的 FileServer
、負責 404 的NotFoundHandler
和 負責重定向的RedirectHandler
。下面這個簡單的例子,把當前目錄全部文件 host 到服務端:
package main import ( "net/http" ) func main() { http.ListenAndServe(":12345", http.FileServer(http.Dir("."))) }
強大吧!只要一行邏輯代碼就能實現一個簡單的靜態文件服務器。從這裏能夠看出一件事:http.ListenAndServe
第二個參數就是一個 Handler 函數(請記住這一點,後面有些內容依賴於這個)。
運行這個程序,在瀏覽器中打開 http://127.0.0.1:12345
,能夠看到全部的文件,點擊對應的文件還能看到它的內容。
其餘兩個 Handler,這裏就再也不舉例子了,讀者能夠自行參考文檔。
雖然上面的代碼已經工做,而且能實現不少功能,可是實際開發中,HTTP 接口會有許多的 URL 和對應的 Handler。這裏就要講 net/http
的另一個重要的概念:ServeMux
。Mux
是 multiplexor
的縮寫,就是多路傳輸的意思(請求傳過來,根據某種判斷,分流到後端多個不一樣的地方)。ServeMux
能夠註冊多了 URL 和 handler 的對應關係,並自動把請求轉發到對應的 handler 進行處理。咱們仍是來看例子吧:
package main import ( "io" "net/http" ) func helloHandler(w http.ResponseWriter, r *http.Request) { io.WriteString(w, "Hello, world!\n") } func echoHandler(w http.ResponseWriter, r *http.Request) { io.WriteString(w, r.URL.Path) } func main() { mux := http.NewServeMux() mux.HandleFunc("/hello", helloHandler) mux.HandleFunc("/", echoHandler) http.ListenAndServe(":12345", mux) }
這個服務器的功能也很簡單:若是在請求的 URL 是 /hello
,就返回 hello, world!
;不然就返回 URL 的路徑,路徑是從請求對象 http.Requests
中提取的。
這段代碼和以前的代碼有兩點區別:
NewServeMux
生成了 ServerMux
結構,URL 和 handler 是經過它註冊的http.ListenAndServe
方法第二個參數變成了上面的 mux
變量還記得咱們以前說過,http.ListenAndServe
第二個參數應該是 Handler 類型的變量嗎?這裏爲何能傳過來 ServeMux
?嗯,估計你也猜到啦:ServeMux
也是是 Handler
接口的實現,也就是說它實現了 ServeHTTP
方法,咱們來看一下:
type ServeMux struct { // contains filtered or unexported fields } func NewServeMux() *ServeMux func (mux *ServeMux) Handle(pattern string, handler Handler) func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request)
哈!果真,這裏的方法咱們大都很熟悉,除了 Handler()
返回某個請求的 Handler。Handle
和 HandleFunc
這兩個方法 net/http
也提供了,後面咱們會說明它們之間的關係。而 ServeHTTP
就是 ServeMux
的核心處理邏輯:根據傳遞過來的 Request,匹配以前註冊的 URL 和處理函數,找到最匹配的項,進行處理。能夠說ServeMux
是個特殊的 Handler,它負責路由和調用其餘後端 Handler 的處理方法。
關於ServeMux
,有幾點要說明:
/
:表示一個子樹,後面能夠跟其餘子路徑; 末尾不是 /
,表示一個葉子,固定的路徑/
結尾的 URL 能夠匹配它的任何子路徑,好比 /images
會匹配 /images/cute-cat.jpg
ServeMux
也會識別和處理 .
和 ..
,正確轉換成對應的 URL 地址你可能會有疑問?咱們之間爲何沒有使用 ServeMux
就能實現路徑功能?那是由於net/http
在後臺默認建立使用了 DefaultServeMux
。
嗯,上面基本覆蓋了編寫 HTTP 服務端須要的全部內容。這部分就分析一下,它們的源碼實現,加深理解,之後遇到疑惑也能經過源碼來定位和解決。
首先來看 http.ListenAndServe()
:
func ListenAndServe(addr string, handler Handler) error { server := &Server{Addr: addr, Handler: handler} return server.ListenAndServe() }
這個函數其實也是一層封裝,建立了 Server
結構,並調用它的 ListenAndServe
方法,那咱們就跟進去看看:
// A Server defines parameters for running an HTTP server. // The zero value for Server is a valid configuration. type Server struct { Addr string // TCP address to listen on, ":http" if empty Handler Handler // handler to invoke, http.DefaultServeMux if nil ...... } // ListenAndServe listens on the TCP network address srv.Addr and then // calls Serve to handle requests on incoming connections. If // srv.Addr is blank, ":http" is used. func (srv *Server) ListenAndServe() error { addr := srv.Addr if addr == "" { addr = ":http" } ln, err := net.Listen("tcp", addr) if err != nil { return err } return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)}) }
Server
保存了運行 HTTP 服務須要的參數,調用 net.Listen
監聽在對應的 tcp 端口,tcpKeepAliveListener
設置了 TCP 的 KeepAlive
功能,最後調用 srv.Serve()
方法開始真正的循環邏輯。咱們再跟進去看看 Serve
方法:
// Serve accepts incoming connections on the Listener l, creating a // new service goroutine for each. The service goroutines read requests and // then call srv.Handler to reply to them. func (srv *Server) Serve(l net.Listener) error { defer l.Close() var tempDelay time.Duration // how long to sleep on accept failure // 循環邏輯,接受請求並處理 for { // 有新的鏈接 rw, e := l.Accept() if e != nil { if ne, ok := e.(net.Error); ok && ne.Temporary() { if tempDelay == 0 { tempDelay = 5 * time.Millisecond } else { tempDelay *= 2 } if max := 1 * time.Second; tempDelay > max { tempDelay = max } srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay) time.Sleep(tempDelay) continue } return e } tempDelay = 0 // 建立 Conn 鏈接 c, err := srv.newConn(rw) if err != nil { continue } c.setState(c.rwc, StateNew) // before Serve can return // 啓動新的 goroutine 進行處理 go c.serve() } }
最上面的註釋也說明了這個方法的主要功能:
Listener l
傳遞過來的請求srv.Handler
func (c *conn) serve() { origConn := c.rwc // copy it before it's set nil on Close or Hijack ... for { w, err := c.readRequest() if c.lr.N != c.server.initialLimitedReaderSize() { // If we read any bytes off the wire, we're active. c.setState(c.rwc, StateActive) } ... // HTTP cannot have multiple simultaneous active requests.[*] // Until the server replies to this request, it can't read another, // so we might as well run the handler in this goroutine. // [*] Not strictly true: HTTP pipelining. We could let them all process // in parallel even if their responses need to be serialized. serverHandler{c.server}.ServeHTTP(w, w.req) w.finishRequest() if w.closeAfterReply { if w.requestBodyLimitHit { c.closeWriteAndWait() } break } c.setState(c.rwc, StateIdle) } }
看到上面這段代碼 serverHandler{c.server}.ServeHTTP(w, w.req)
這一句了嗎?它會調用最先傳遞給 Server
的 Handler 函數:
func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { handler := sh.srv.Handler if handler == nil { handler = DefaultServeMux } if req.RequestURI == "*" && req.Method == "OPTIONS" { handler = globalOptionsHandler{} } handler.ServeHTTP(rw, req) }
哇!這裏看到 DefaultServeMux
了嗎?若是沒有 handler 爲空,就會使用它。handler.ServeHTTP(rw, req)
,Handler 接口都要實現 ServeHTTP
這個方法,由於這裏就要被調用啦。
也就是說,不管如何,最終都會用到 ServeMux
,也就是負責 URL 路由的傢伙。前面也已經說過,它的 ServeHTTP
方法就是根據請求的路徑,把它轉交給註冊的 handler 進行處理。此次,咱們就在源碼層面一探究竟。
咱們已經知道,ServeMux
會以某種方式保存 URL 和 Handlers 的對應關係,下面咱們就從代碼層面來解開這個祕密:
type ServeMux struct { mu sync.RWMutex m map[string]muxEntry // 存放路由信息的字典!\(^o^)/ hosts bool // whether any patterns contain hostnames } type muxEntry struct { explicit bool h Handler pattern string }
沒錯,數據結構也比較直觀,和咱們想象的差很少,路由信息保存在字典中,接下來就看看幾個重要的操做:路由信息是怎麼註冊的?ServeHTTP
方法究竟是怎麼作的?路由查找過程是怎樣的?
// Handle registers the handler for the given pattern. // If a handler already exists for pattern, Handle panics. func (mux *ServeMux) Handle(pattern string, handler Handler) { mux.mu.Lock() defer mux.mu.Unlock() // 邊界狀況處理 if pattern == "" { panic("http: invalid pattern " + pattern) } if handler == nil { panic("http: nil handler") } if mux.m[pattern].explicit { panic("http: multiple registrations for " + pattern) } // 建立 `muxEntry` 並添加到路由字典中 mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern} if pattern[0] != '/' { mux.hosts = true } // 這是一個頗有用的小技巧,若是註冊了 `/tree/`, `serveMux` 會自動添加一個 `/tree` 的路徑並重定向到 `/tree/`。固然這個 `/tree` 路徑會被用戶顯示的路由信息覆蓋。 // Helpful behavior: // If pattern is /tree/, insert an implicit permanent redirect for /tree. // It can be overridden by an explicit registration. n := len(pattern) if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit { // If pattern contains a host name, strip it and use remaining // path for redirect. path := pattern if pattern[0] != '/' { // In pattern, at least the last character is a '/', so // strings.Index can't be -1. path = pattern[strings.Index(pattern, "/"):] } mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern} } }
路由註冊沒有什麼特殊的地方,很簡單,也符合咱們的預期,注意最後一段代碼對相似/tree
URL 重定向的處理。
// ServeHTTP dispatches the request to the handler whose // pattern most closely matches the request URL. func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { if r.RequestURI == "*" { if r.ProtoAtLeast(1, 1) { w.Header().Set("Connection", "close") } w.WriteHeader(StatusBadRequest) return } h, _ := mux.Handler(r) h.ServeHTTP(w, r) }
好吧,ServeHTTP
也只是經過 mux.Handler(r)
找到請求對應的 handler,調用它的ServeHTTP
方法,代碼比較簡單咱們就顯示了,它最終會調用 mux.match()
方法,咱們來看一下它的實現:
// Does path match pattern? func pathMatch(pattern, path string) bool { if len(pattern) == 0 { // should not happen return false } n := len(pattern) if pattern[n-1] != '/' { return pattern == path } // 匹配的邏輯很簡單,path 前面的字符和 pattern 同樣就是匹配 return len(path) >= n && path[0:n] == pattern } // Find a handler on a handler map given a path string // Most-specific (longest) pattern wins func (mux *ServeMux) match(path string) (h Handler, pattern string) { var n = 0 for k, v := range mux.m { if !pathMatch(k, path) { continue } // 最長匹配的邏輯在這裏 if h == nil || len(k) > n { n = len(k) h = v.h pattern = v.pattern } } return }
match
會遍歷路由信息字典,找到全部匹配該路徑最長的那個。路由部分的代碼解釋就到這裏了,最後回答上面的一個問題:http.HandleFunc
和 ServeMux.HandlerFunc
是什麼關係?
// Handle registers the handler for the given pattern // in the DefaultServeMux. // The documentation for ServeMux explains how patterns are matched. func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } // HandleFunc registers the handler function for the given pattern // in the DefaultServeMux. // The documentation for ServeMux explains how patterns are matched. func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { DefaultServeMux.HandleFunc(pattern, handler) }
原來是直接經過 DefaultServeMux
調用對應的方法,到這裏上面的一切都串起來了!
最後一部分,要講講 Handler 函數接受的兩個參數:http.Request
和http.ResponseWriter
。
Request 就是封裝好的客戶端請求,包括 URL,method,header 等等全部信息,以及一些方便使用的方法:
// A Request represents an HTTP request received by a server // or to be sent by a client. // // The field semantics differ slightly between client and server // usage. In addition to the notes on the fields below, see the // documentation for Request.Write and RoundTripper. type Request struct { // Method specifies the HTTP method (GET, POST, PUT, etc.). // For client requests an empty string means GET. Method string // URL specifies either the URI being requested (for server // requests) or the URL to access (for client requests). // // For server requests the URL is parsed from the URI // supplied on the Request-Line as stored in RequestURI. For // most requests, fields other than Path and RawQuery will be // empty. (See RFC 2616, Section 5.1.2) // // For client requests, the URL's Host specifies the server to // connect to, while the Request's Host field optionally // specifies the Host header value to send in the HTTP // request. URL *url.URL // The protocol version for incoming requests. // Client requests always use HTTP/1.1. Proto string // "HTTP/1.0" ProtoMajor int // 1 ProtoMinor int // 0 // A header maps request lines to their values. // If the header says // // accept-encoding: gzip, deflate // Accept-Language: en-us // Connection: keep-alive // // then // // Header = map[string][]string{ // "Accept-Encoding": {"gzip, deflate"}, // "Accept-Language": {"en-us"}, // "Connection": {"keep-alive"}, // } // // HTTP defines that header names are case-insensitive. // The request parser implements this by canonicalizing the // name, making the first character and any characters // following a hyphen uppercase and the rest lowercase. // // For client requests certain headers are automatically // added and may override values in Header. // // See the documentation for the Request.Write method. Header Header // Body is the request's body. // // For client requests a nil body means the request has no // body, such as a GET request. The HTTP Client's Transport // is responsible for calling the Close method. // // For server requests the Request Body is always non-nil // but will return EOF immediately when no body is present. // The Server will close the request body. The ServeHTTP // Handler does not need to. Body io.ReadCloser // ContentLength records the length of the associated content. // The value -1 indicates that the length is unknown. // Values >= 0 indicate that the given number of bytes may // be read from Body. // For client requests, a value of 0 means unknown if Body is not nil. ContentLength int64 // TransferEncoding lists the transfer encodings from outermost to // innermost. An empty list denotes the "identity" encoding. // TransferEncoding can usually be ignored; chunked encoding is // automatically added and removed as necessary when sending and // receiving requests. TransferEncoding []string // Close indicates whether to close the connection after // replying to this request (for servers) or after sending // the request (for clients). Close bool // For server requests Host specifies the host on which the // URL is sought. Per RFC 2616, this is either the value of // the "Host" header or the host name given in the URL itself. // It may be of the form "host:port". // // For client requests Host optionally overrides the Host // header to send. If empty, the Request.Write method uses // the value of URL.Host. Host string // Form contains the parsed form data, including both the URL // field's query parameters and the POST or PUT form data. // This field is only available after ParseForm is called. // The HTTP client ignores Form and uses Body instead. Form url.Values // PostForm contains the parsed form data from POST or PUT // body parameters. // This field is only available after ParseForm is called. // The HTTP client ignores PostForm and uses Body instead. PostForm url.Values // MultipartForm is the parsed multipart form, including file uploads. // This field is only available after ParseMultipartForm is called. // The HTTP client ignores MultipartForm and uses Body instead. MultipartForm *multipart.Form ... // RemoteAddr allows HTTP servers and other software to record // the network address that sent the request, usually for // logging. This field is not filled in by ReadRequest and // has no defined format. The HTTP server in this package // sets RemoteAddr to an "IP:port" address before invoking a // handler. // This field is ignored by the HTTP client. RemoteAddr string ... }
Handler 須要知道關於請求的任何信息,都要從這個對象中獲取,通常不會直接修改這個對象(除非你很是清楚本身在作什麼)!
ResponseWriter 是一個接口,定義了三個方法:
Header()
:返回一個 Header 對象,能夠經過它的 Set()
方法設置頭部,注意最終返回的頭部信息可能和你寫進去的不徹底相同,由於後續處理還可能修改頭部的值(好比設置Content-Length
、Content-type
等操做)Write()
: 寫 response 的主體部分,好比 html
或者 json
的內容就是放到這裏的WriteHeader()
:設置 status code,若是沒有調用這個函數,默認設置爲 http.StatusOK
, 就是 200
狀態碼// A ResponseWriter interface is used by an HTTP handler to // construct an HTTP response. type ResponseWriter interface { // Header returns the header map that will be sent by WriteHeader. // Changing the header after a call to WriteHeader (or Write) has // no effect. Header() Header // Write writes the data to the connection as part of an HTTP reply. // If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK) // before writing the data. If the Header does not contain a // Content-Type line, Write adds a Content-Type set to the result of passing // the initial 512 bytes of written data to DetectContentType. Write([]byte) (int, error) // WriteHeader sends an HTTP response header with status code. // If WriteHeader is not called explicitly, the first call to Write // will trigger an implicit WriteHeader(http.StatusOK). // Thus explicit calls to WriteHeader are mainly used to // send error codes. WriteHeader(int) }
實際上傳遞給 Handler 的對象是:
// A response represents the server side of an HTTP response. type response struct { conn *conn req *Request // request for this response wroteHeader bool // reply header has been (logically) written wroteContinue bool // 100 Continue response was written w *bufio.Writer // buffers output in chunks to chunkWriter cw chunkWriter sw *switchWriter // of the bufio.Writer, for return to putBufioWriter // handlerHeader is the Header that Handlers get access to, // which may be retained and mutated even after WriteHeader. // handlerHeader is copied into cw.header at WriteHeader // time, and privately mutated thereafter. handlerHeader Header ... status int // status code passed to WriteHeader ... }
它固然實現了上面提到的三個方法,具體代碼就不放到這裏了,感興趣的能夠本身去看。
雖然 net/http
提供的各類功能已經知足基本需求了,可是不少時候還不夠方便,好比:
ServeMux
變量中雖然這些均可以本身手動去碼,但實在很不方便。這部分看看有哪些三方的包,都提供了哪些額外的功能。
alice 的功能很簡單——把多個 handler 串聯起來,有請求過來的時候,逐個經過這個 handler 進行處理。
alice.New(Middleware1, Middleware2, Middleware3).Then(App)
Gorilla 提供了不少網絡有關的組件, Mux 就是其中一個,負責 HTTP 的路由功能。這個組件彌補了上面提到的 ServeMux
的一些缺陷,支持的功能有:
SubRouter
能夠實現路由信息的傳遞ServeMux
徹底兼容r := mux.NewRouter() r.HandleFunc("/products/{key}", ProductHandler) r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler) r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)
httprouter 和 mux
同樣,也是擴展了自帶 ServeMux
功能的路由庫。它的主要特色是速度快、內存使用少、可擴展性高(使用 radix tree 數據結構進行路由匹配,路由項不少的時候速度也很快)。
package main import ( "fmt" "github.com/julienschmidt/httprouter" "net/http" "log" ) func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) { fmt.Fprint(w, "Welcome!\n") } func Hello(w http.ResponseWriter, r *http.Request, ps httprouter.Params) { fmt.Fprintf(w, "hello, %s!\n", ps.ByName("name")) } func main() { router := httprouter.New() router.GET("/", Index) router.GET("/hello/:name", Hello) log.Fatal(http.ListenAndServe(":8080", router)) }
http middleware 庫,支持嵌套的中間件,可以和其餘路由庫兼容。同時它也自帶了很多 middleware 可使用,好比Recovery
、Logger
、Static
。
router := mux.NewRouter() router.HandleFunc("/", HomeHandler) n := negroni.New(Middleware1, Middleware2) // Or use a middleware with the Use() function n.Use(Middleware3) // router goes last n.UseHandler(router) http.ListenAndServe(":3001", n)
這篇文章參考瞭如下資料: