驗證碼的識別練習(從頭訓練—相比於遷移學習)

生成驗證碼數據集

僅使用了數字0-9python

#coding:utf-8
from captcha.image import ImageCaptcha  # pip install captcha
import numpy as np
from PIL import Image
import random,sys

# 驗證碼中的字符, 就不用漢字了
number = ['0','1','2','3','4','5','6','7','8','9']
#alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
#ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
# 驗證碼通常都無視大小寫;驗證碼長度4個字符
def random_captcha_text(char_set=number, captcha_size=4):
	captcha_text = []
	for i in range(captcha_size):
		c = random.choice(char_set)
		captcha_text.append(c)
	return captcha_text

# 生成字符對應的驗證碼
def gen_captcha_text_and_image():
	image = ImageCaptcha()

	captcha_text = random_captcha_text()
	captcha_text = ''.join(captcha_text) #把驗證碼列表轉爲字符串

	captcha = image.generate(captcha_text)
	image.write(captcha_text, 'captcha/images/' + captcha_text + '.jpg')  # 寫到文件

num = 5000
if __name__ == '__main__':
    for i in range(num):
        gen_captcha_text_and_image()
        sys.stdout.write('\r>> Creating image %d/%d' % (i+1, num))
        sys.stdout.flush()
    sys.stdout.write('\n')
    sys.stdout.flush()

    print('生成完畢')
複製代碼

將數據集轉化爲tfrecord的文件

import tensorflow as tf
import os
import random
import math
import sys
from PIL import Image
import numpy as np

#驗證集數量
_NUM_TEST = 500
#隨機種子
_RANDOM_SEED = 0
#數據集路徑
DATASET_DIR = "E:/tf3/captcha/images/"
#tfrecord文件存放路徑
TFRECORD_DIR = "E:/tf3/captcha/"

#判斷tfrecord文件是否是存在
def _dataset_exists(dataset_dir):
    for split_name in ['train', 'test']:
        output_filename = os.path.join(dataset_dir, split_name + '.tfrecords')
        if not tf.gfile.Exists(output_filename):
            return False
    return True

#獲取全部的驗證碼圖片
def _get_filenames_and_classes(dataset_dir):
    photo_filenames = []
    for filename in os.listdir(dataset_dir):
        path = os.path.join(dataset_dir, filename)
        photo_filenames.append(path)
    return photo_filenames

def int64_feature(values):
    if not isinstance(values, (tuple, list)):
        values = [values]
    return tf.train.Feature(int64_list=tf.train.Int64List(value=values))

def bytes_feature(values):
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))

def image_to_tfexample(image_data, label0, label1, label2, label3):
    return tf.train.Example(features=tf.train.Features(feature={
        'image':bytes_feature(image_data),
        'label0':int64_feature(label0),
        'label1':int64_feature(label1),
        'label2':int64_feature(label2),
        'label3':int64_feature(label3),
        }))


#把數據轉爲tfrecord格式
def _convert_dataset(split_name, filenames, dataset_dir):
    assert split_name in ['train', 'test']

    with tf.Session() as sess:
        #定義tfrecord文件的路徑和名字
        output_filename = os.path.join(TFRECORD_DIR, split_name + '.tfrecords')
        with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
            for i, filename in enumerate(filenames):
                try:
                    #sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames)))
                    #sys.stdout.flush()

                    #讀取照片
                    image_data = Image.open(filename)
                    #根據模型的結構resize
                    image_data = image_data.resize((224, 224))
                    #灰度化
                    image_data = np.array(image_data.convert('L'))
                    image_data = image_data.tobytes()

                    #獲取labels
                    labels = filename.split('/')[-1][0:4]
                    num_labels = []
                    for j in range(4):
                        num_labels.append(int(labels[j]))

                    #生成protocol數據類型
                    example = image_to_tfexample(image_data,num_labels[0], num_labels[1], num_labels[2], num_labels[3])
                    tfrecord_writer.write(example.SerializeToString())

                except IOError as e:
                    print('could not read: ', filename)
                    print('error: ', e)
                    print('skip it \n')

    #sys.stdout.write('\n')
    #sys.stdout.flush()

if _dataset_exists(TFRECORD_DIR):
    print("wenjiancunzai")
else:
    #獲取全部的圖片
    photo_filenames = _get_filenames_and_classes(DATASET_DIR)

    #把數據切分爲訓練集和測試機斌打亂
    random.seed(_RANDOM_SEED)
    random.shuffle(photo_filenames)
    training_filenames = photo_filenames[_NUM_TEST:]
    testing_filenames = photo_filenames[:_NUM_TEST]

    #數據轉化
    _convert_dataset('train', training_filenames, DATASET_DIR)
    _convert_dataset('test', testing_filenames, DATASET_DIR)
    print('生成tfrecord文件')
    
複製代碼

使用Alexnet網絡進行從頭訓練

在使用以前須要配置一下環境,由於在下面訓練的代碼中,要在nets中import nets_factory, 因此:git

而且在用的的alexnet網絡中修改定存輸出

import os
import tensorflow as tf
import numpy as np
from PIL import Image
from nets import nets_factory

#不一樣字符數量
CHAR_SET_LEN = 10
#圖片高度、寬度
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
#批次
BATCH_SIZE = 1
#tfrecord文件存放路徑
TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"

#佔位符
x = tf.placeholder(tf.float32, [None, 224, 224])
y0 = tf.placeholder(tf.float32, [None])
y1 = tf.placeholder(tf.float32, [None])
y2 = tf.placeholder(tf.float32, [None])
y3 = tf.placeholder(tf.float32, [None])

#學習率
lr = tf.Variable(0.03, dtype=tf.float32)

#從tfrecord讀取數據
def read_and_decode(filename):
    #根據文件名生成一個隊列
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    #返回文件名和文件
    _,serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'image': tf.FixedLenFeature([], tf.string),
                                           'label0': tf.FixedLenFeature([], tf.int64),
                                           'label1': tf.FixedLenFeature([], tf.int64),
                                           'label2': tf.FixedLenFeature([], tf.int64),
                                           'label3': tf.FixedLenFeature([], tf.int64),
                                           })
    #獲取圖片數據
    image = tf.decode_raw(features['image'], tf.uint8)
    #tf.train.shuffle_batch必須肯定shape
    image = tf.reshape(image, [224, 224])
    #圖片預處理
    image = tf.cast(image, tf.float32) / 255.0
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    #獲取label
    label0 = tf.cast(features['label0'], tf.int32)
    label1 = tf.cast(features['label0'], tf.int32)
    label2 = tf.cast(features['label0'], tf.int32)
    label3 = tf.cast(features['label0'], tf.int32)

    return image, label0, label1, label2, label3

#獲取圖片數據和標籤
image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)

#使用shuffle_batch能夠隨機打亂
image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
    [image, label0, label1, label2, label3], batch_size = BATCH_SIZE,
    capacity = 50000, min_after_dequeue=10000, num_threads=1)

#定義網絡結構
train_network_fn = nets_factory.get_network_fn(
    'alexnet_v2',
    num_classes=CHAR_SET_LEN,
    weight_decay=0.0005,
    is_training=True)


with tf.Session() as sess:

    #inputs: a tensor of size [batch_size, height, width, channels]
    X = tf.reshape(x, [BATCH_SIZE, 224,224,1])
    #數據輸入網絡獲得輸出值
    logits0, logits1, logits2, logits3, end_points = train_network_fn(X)

    #把標籤轉成one_hot的形式
    one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN)
    one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN)
    one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN)
    one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN)

    #計算loss
    loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits0, labels=one_hot_labels0))
    loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits1, labels=one_hot_labels1))
    loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits2, labels=one_hot_labels2))
    loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits3, labels=one_hot_labels3))
    #計算總的loss
    total_loss = (loss0+loss1+loss2+loss3)/4.0
    #優化total_loss
    optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss)

    #計算準確率
    correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0, 1), tf.argmax(logits0, 1))
    accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0, tf.float32))

    correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1, 1), tf.argmax(logits1, 1))
    accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32))

    correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2, 1), tf.argmax(logits2, 1))
    accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32))

    correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3, 1), tf.argmax(logits3, 1))
    accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3, tf.float32))

    #用於保存模型
    saver = tf.train.Saver()
    #初始化
    sess.run(tf.global_variables_initializer())

    #建立一個協調器,管理線程
    coord = tf.train.Coordinator()
    #啓動queuerunner, 此時文件名隊列已經進入隊
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    for i in range(6001):
        #獲取一個批次的數據和標籤
        b_image, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch, label_batch0, label_batch1, label_batch2, label_batch3])
        #優化模型
        sess.run(optimizer, feed_dict={x: b_image, y0: b_label0, y1: b_label1, y2: b_label2, y3: b_label3})

        # 每迭代20詞計算一次loss和準確率
        if i % 20 == 0:
            #每迭代2000次下降一次學習率
            if i%2000 == 0:
                sess.run(tf.assign(lr, lr/3))
            acc0,acc1,acc2,acc3,loss_ = sess.run([accuracy0,accuracy1,accuracy2,accuracy3,total_loss],feed_dict={x:b_image,
                                                                                                                 y0:b_label0,
                                                                                                                 y1:b_label1,
                                                                                                                 y2:b_label2,
                                                                                                                 y3:b_label3})
            learning_rate = sess.run(lr)
            print("Iter:%d Loss:%.3f Accuracy:%.2f,%.2f,%.2f,%.2f Learning_rate:%.4f" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate))

            #保存模型
            #if acc0 > 0.9 and acc1>0.9and
            if i == 6000:
                saver.save(sess, "./captcha/models/crack_captcha.model", gloabl_step=i)
                break

    #通知其餘線程關閉
    coord.request_stop()
    #其餘全部線程關閉以後,這一函數才能返回
    coord.join(threads)
複製代碼

最後會獲得一個models參數。bash

使用獲得的參數進行預測檢驗

import os
import tensorflow as tf
import numpy as np
from PIL import Image
from nets import nets_factory
import matplotlib.pyplot as plt

#不一樣字符數量
CHAR_SET_LEN = 10
#圖片高度、寬度
IMAGE_HEIGHT = 60
IMAGE_WIDTH = 160
#批次
BATCH_SIZE = 1
#tfrecord文件存放路徑
TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"

#佔位符
x = tf.placeholder(tf.float32, [None, 224, 224])

#從tfrecord讀取數據
def read_and_decode(filename):
    #根據文件名生成一個隊列
    filename_queue = tf.train.string_input_producer([filename])
    reader = tf.TFRecordReader()
    #返回文件名和文件
    _,serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example,
                                       features={
                                           'image': tf.FixedLenFeature([], tf.string),
                                           'label0': tf.FixedLenFeature([], tf.int64),
                                           'label1': tf.FixedLenFeature([], tf.int64),
                                           'label2': tf.FixedLenFeature([], tf.int64),
                                           'label3': tf.FixedLenFeature([], tf.int64),
                                           })
    #獲取圖片數據
    image = tf.decode_raw(features['image'], tf.uint8)
    #沒有通過預處理的灰度圖
    image_raw = tf.reshape(image, [224, 224])
    #tf.train.shuffle_batch必須肯定shape
    image = tf.reshape(image, [224, 224])
    #圖片預處理
    image = tf.cast(image, tf.float32) / 255.0
    image = tf.subtract(image, 0.5)
    image = tf.multiply(image, 2.0)
    #獲取label
    label0 = tf.cast(features['label0'], tf.int32)
    label1 = tf.cast(features['label0'], tf.int32)
    label2 = tf.cast(features['label0'], tf.int32)
    label3 = tf.cast(features['label0'], tf.int32)

    return image, image_raw, label0, label1, label2, label3

#獲取圖片數據和標籤
image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)

#使用shuffle_batch能夠隨機打亂
image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
    [image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE,
    capacity = 50000, min_after_dequeue=10000, num_threads=1)

#定義網絡結構
train_network_fn = nets_factory.get_network_fn(
    'alexnet_v2',
    num_classes=CHAR_SET_LEN,
    weight_decay=0.0005,
    is_training=False)


with tf.Session() as sess:

    #inputs: a tensor of size [batch_size, height, width, channels]
    X = tf.reshape(x, [BATCH_SIZE, 224,224,1])
    #數據輸入網絡獲得輸出值
    logits0, logits1, logits2, logits3, end_points = train_network_fn(X)

    #預測值
    prediction0 = tf.reshape(logits0, [-1, CHAR_SET_LEN])
    prediction0 = tf.argmax(prediction0, 1)

    prediction1 = tf.reshape(logits1, [-1, CHAR_SET_LEN])
    prediction1 = tf.argmax(prediction1, 1)

    prediction2 = tf.reshape(logits2, [-1, CHAR_SET_LEN])
    prediction2 = tf.argmax(prediction2, 1)

    prediction3 = tf.reshape(logits3, [-1, CHAR_SET_LEN])
    prediction3 = tf.argmax(prediction3, 1)

    #初始化
    sess.run(tf.global_variables_initializer())

    #載入訓練好的模型
    saver = tf.train.Saver()
    saver.restore(sess, './captcha/models/crack_captcha.model-20')
    
    #建立一個協調器,管理線程
    coord = tf.train.Coordinator()
    #啓動queuerunner, 此時文件名隊列已經進入隊
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    for i in range(5):
        #獲取一個批次的數據和標籤
        b_image, b_image_raw, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch,
                                                                                 image_raw_batch,
                                                                                 label_batch0,
                                                                                 label_batch1,
                                                                                 label_batch2,
                                                                                 label_batch3])
        #顯示圖片
        img = Image.fromarray(b_image_raw[0], 'L')
        plt.imshow(img)
        plt.axis('off')
        plt.show()
        #打印標籤
        print('label: ', b_label0, b_label1, b_label2, b_label3)
        #預測
        label0, label1, label2, label3 = sess.run([prediction0, prediction1, prediction2, prediction3], feed_dict={x: b_image})
        #打印預測值
        print("predict: ", label0, label1, label2, label3)
   

    #通知其餘線程關閉
    coord.request_stop()
    #其餘全部線程關閉以後,這一函數才能返回
    coord.join(threads)
複製代碼
相關文章
相關標籤/搜索