最近公司組織了一場大咖秀,有位講師建議咱們沒事多參加阿里的天池大賽,說是對提升本身頗有幫助。因而想起本身幾天前看到的FinanceR專欄的天池最後一千米,便緊隨偶像步伐,註冊並下載了一份數據,湊個熱鬧。詳情請點擊賽題介紹html
此文爲截圖版,須要js交互版的原文請點擊這裏node
數據有三種類型的節點。第一類是Site,電商訂單發貨節點。第二類是Shop,O2O訂單發貨節點。第三類是Spot,消費者收穫節點。電商訂單的要求比較鬆,只需在當天晚上8點前配送完畢便可。O2O訂單比較着急,必須在指定的時刻前去Shop取貨,並在指定的時刻去Spot送貨。git
首先,咱們將電商訂單的狀況打到地圖上看一下。github
library(readr) library(plyr) library(dplyr) library(tidyr) library(ggplot2) library(plotly) library(lubridate) library(leaflet) library(sp) library(RColorBrewer) library(jsonlite) library(splitstackshape) library(stringr) library(rlist) # 輔助函數 points2spline <- function(df, x_field, y_field, id_field){ data <- as.matrix(df[,c(x_field, y_field)]) id = df[1, id_field] Lines(list(Line(data)), ID=id) } # 探索Site與Spot的空間關係 df.site <- read_csv("1.csv") df.spot <- read_csv("2.csv") df.e.order <- read_csv("4.csv") df.site.spot <- df.e.order %>% inner_join(df.site, by=c("Site_id")) %>% inner_join(df.spot, by=c("Spot_id")) %>% unite(Point_x, ends_with("x")) %>% unite(Point_y, ends_with("y")) %>% gather(point, location, Point_x, Point_y) %>% separate(location, c("Lng", "Lat"), sep="_", convert=TRUE) %>% unite(Line_id, Site_id, Spot_id, remove=FALSE) df.site <- df.site %>% inner_join(df.site.spot %>% group_by(Site_id) %>% dplyr::summarise(order_cnt=sum(Num)), by=c("Site_id")) ls.site.spot <- split(df.site.spot, df.site.spot[, c("Line_id")]) names(ls.site.spot) <- NULL sl.site.spot <- SpatialLines(llply(ls.site.spot, points2spline, "Lng", "Lat", "Line_id")) m <- leaflet() %>% addTiles( 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}', tileOptions(tileSize=256, minZoom=9, maxZoom=17) ) %>% addPolylines(data=sl.site.spot, weight=2, color="#377EB8") %>% addCircleMarkers(lng=~Lng, lat=~Lat, radius=~order_cnt/1000, data=df.site, stroke=FALSE, fill=TRUE, fillColor="#E41A1C", fillOpacity=0.5, popup=~paste0("Order Num: ", order_cnt)) %>% fitBounds(sl.site.spot@bbox["x", "min"],sl.site.spot@bbox["y", "min"], sl.site.spot@bbox["x", "max"], sl.site.spot@bbox["y", "max"]) m
圖中紅色的圓圈就是每一個Site,半徑越長代表出貨量越大。藍色的線表示這個Site與它負責的電商訂單的Spot的連線。能夠看出Site和Spot之間是一一對應的關係,不存在交叉,因此若是隻考慮電商訂單,這就是一個比較簡單的VRP問題,能夠分而治之,每一個Site單獨規劃。web
可是呢,咱們還有一堆O2O訂單要一塊兒配送,這就讓問題的複雜度驟然提高了難度。咱們先來看一下O2O訂單的空間分佈。算法
df.shop <- read_csv("3.csv") df.o2o.order <- read_csv("5.csv") df.shop.spot <- df.o2o.order %>% inner_join(df.shop, by=c("Shop_id")) %>% inner_join(df.spot, by=c("Spot_id")) %>% unite(Point_x, ends_with("x")) %>% unite(Point_y, ends_with("y")) %>% gather(point, location, Point_x, Point_y) %>% separate(location, c("Lng", "Lat"), sep="_", convert=TRUE) %>% unite(Line_id, Shop_id, Spot_id, remove=FALSE) ls.shop.spot <- split(df.shop.spot, df.shop.spot[, c("Line_id")]) names(ls.shop.spot) <- NULL sl.shop.spot <- SpatialLines(llply(ls.shop.spot, points2spline, "Lng", "Lat", "Line_id")) df.shop <- df.shop %>% inner_join(df.shop.spot %>% group_by(Shop_id) %>% dplyr::summarise(order_cnt=sum(Num)), by=c("Shop_id")) m <- leaflet() %>% addTiles( 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}', tileOptions(tileSize=256, minZoom=9, maxZoom=17) ) %>% addPolylines(data=sl.shop.spot, weight=2, color="#4DAF4A") %>% addCircleMarkers(lng=~Lng, lat=~Lat, radius=~5, data=df.shop, stroke=FALSE, fill=TRUE, fillColor="#984EA3", fillOpacity=0.5, popup=~paste0("Order Num: ", order_cnt)) %>% fitBounds(sl.shop.spot@bbox["x", "min"],sl.shop.spot@bbox["y", "min"], sl.shop.spot@bbox["x", "max"], sl.shop.spot@bbox["y", "max"]) m
途中紫色的點爲每一個shop,綠線爲O2O訂單的spot與shop的連線。從空間上看,O2O的訂單分佈就比較散亂了。咱們將O2O訂單和電商訂單的分佈疊到一塊兒看一下效果:json
疊在一塊兒後,咱們可以很明顯地看到O2O訂單範圍比電商範圍小,集中在市區。segmentfault
下面,咱們模仿下FinanceR的思路,看一下O2O提單與配送時間的分佈。app
fake_dt <- "20160806" o2o.hour <- df.o2o.order %>% mutate(pickup_hour=round_date(ymd_hm(paste0(fake_dt, Pickup_time)), "hour"), delivery_hour=round_date(ymd_hm(paste0(fake_dt, Delivery_time)), "hour")) %>% gather(time_type, tm, pickup_hour, delivery_hour) %>% group_by(time_type, tm) %>% summarise(order_cnt=n()) ggplot(o2o.hour) + geom_point(aes(x=tm, y=order_cnt, colour=time_type)) + geom_line(aes(x=tm, y=order_cnt, colour=time_type)) + theme_bw(base_size=16)
O2O訂單有一個特色,就是比較碎。從數據中咱們能夠看到存在同一個spot在不一樣時刻向同一個shop下的訂單。若是把這些碎訂單拼湊在一塊兒統一配送的話,可以節約很大成本。那麼這種拼單思路的操做空間有多大呢?less
df.o2o.order.batch <- df.o2o.order %>% mutate(batch_pickup_time = round_minute(ymd_hm(paste0(fake_dt, Pickup_time)), 30), batch_delivery_time = round_minute(ymd_hm(paste0(fake_dt, Delivery_time)), 30)) %>% group_by(Spot_id, Shop_id, batch_pickup_time, batch_delivery_time) %>% summarise(total_order_size=sum(Num), total_order_num=n()) table(df.o2o.order.batch$total_order_num)
在拼單的時候,考慮到用戶體驗,將pickup和delivery時刻取整爲最近的30分鐘時刻,再分組統計並單數量。結論是2975單沒法拼單,143個訂單能2單合併,4個訂單能3單合併。因此,彷彿拼單預處理的優化空間不是很大,關鍵仍是在這個配送問題自己。
最後一千米急速配送這個比賽,是一道十分困難的VRP問題。學術上,這種問題稱爲VRPPDPTW,添加的後綴PDP表示Pickup Delivery Problem,即容許沿途取貨送貨;TW表示Time Window,即配送存在時間窗口約束。這麼複雜的問題,我這種菜鳥確定是搞不定的。
因此本文暫且把O2O訂單拋開,來解一解單純的電商訂單問題。前文已經提到,電商的最後一千米配送網規劃得比較整齊,一個site對一個spot,order之間沒有交集,所以能夠逐個site求解。本文采用的方法是Saving Method。
# 輔助函數 ## 賽題規定的兩點距離計算公式 p2pdist <- function(lng1, lat1, lng2, lat2){ diff_lat = (lat1 - lat2)/2 diff_lng = (lng1 - lng2)/2 coors_sum = (sin((pi * diff_lat )/180))^2 + cos((pi * lat1)/180) * cos((pi * lat2)/180)*(sin((pi * diff_lng )/180))^2 result = 2 * 6378137 * asin (sqrt(coors_sum)) return(result) } ## 賽題規定的配送員默認速度是250m/min distance_time_cost <- function(distance, speed=250) { return(round(distance/speed)) } ## 賽題規定的訂單處理時間 processing_time_cost <- function(package_num) { return(round(3*sqrt(package_num) + 5)) } # Saving Method get_sub_data <- function(target.site, df.site, df.spot, df.e.order) { target.site.geo <- df.site %>% inner_join(df.e.order %>% group_by(Site_id) %>% dplyr::summarise(Num=sum(Num)), by=c("Site_id")) %>% filter(Site_id==target.site) target.spot.geo <- df.e.order %>% filter(Site_id==target.site) %>% inner_join(df.spot, by=c("Spot_id")) %>% arrange(Spot_id) target.site.geo$Index <- 0 target.spot.geo$Index <- 1:nrow(target.spot.geo) points <- rbind(target.site.geo %>% select(Index, Site_id, Lng, Lat, Num) %>% dplyr::rename(ID=Site_id), target.spot.geo %>% select(Index, Spot_id, Lng, Lat, Num) %>% dplyr::rename(ID=Spot_id) ) return(points) } get_cost_matrix <- function(points.matrix) { cost.matrix <- matrix(0, nrow(points), nrow(points)) for(i in 1:nrow(cost.matrix)) { for(j in i:nrow(cost.matrix)) { cost.matrix[i, j] = p2pdist(points.matrix[i, 1], points.matrix[i, 2], points.matrix[j, 1], points.matrix[j, 2]) } } return(cost.matrix) } get_saving_matrix <- function(cost.matrix) { saving.matrix <- matrix(0, nrow(points)-1, nrow(points)-1) for(i in 2:(nrow(cost.matrix)-1)) { for(j in (i+1):nrow(cost.matrix)) { saving.matrix[i-1, j-1] = cost.matrix[1, i] + cost.matrix[1, j] - cost.matrix[i, j] } } return(saving.matrix) } get_vrp_init_solution <- function(demand.vec, cost.matrix) { route <- list() for(i in 1:nrow(demand.vec)) { load = as.integer(demand.vec[i, "Num"]) processing_time = processing_time_cost(load) distance = 2*cost.matrix[1, i+1] distance_time = distance_time_cost(distance) route <- list.append(route, list(route_node=c(i), load=load, processing_time=processing_time, distance=distance, ddistance_time=distance_time ) ) } return(route) } get_vrp_saving_solution <- function(route, saving.matrix, capacity=140) { saving.idx <- order(saving.matrix, decreasing = T) for(k in 1:length(saving.idx)) { cur_saving <- saving.matrix[saving.idx[k]] if(cur_saving <= 0) { break } i <- saving.idx[k] %% nrow(saving.matrix) j <- saving.idx[k] %/% nrow(saving.matrix) + 1 p1.idx <- list.which(route, i %in% route_node)[1] p2.idx <- list.which(route, j %in% route_node)[1] p1 <- route[[p1.idx]] p2 <- route[[p2.idx]] # Condition 1: i and j not in the same route if(p1.idx != p2.idx) { total_load <- p1$load + p2$load total_distance <- p1$distance + p2$distance - cur_saving total_processing_time <- p1$processing_time + p2$processing_time # Condition 2: combine load still less than capacity if(total_load < capacity) { idx1 <- which(p1$route_node == i) idx2 <- which(p2$route_node == j) # Condition 3: both i or j at the head or end of the route if(idx1 == 1 & idx2 == 1) { new_route_node <- c(rev(p1$route_node), p2$route_node) } else if(idx1 == length(p1$route_node) & idx2 == 1) { new_route_node <- c(p1$route_node, p2$route_node) } else if(idx1 == 1 & idx2 == length(p2$route_node)) { new_route_node <- c(p2$route_node, p1$route_node) } else if(idx1 == length(p1$route_node) & idx2 == length(p2$route_node)) { new_route_node <- c(p2$route_node, rev(p1$route_node)) } else { next } route <- route %>% list.remove(c(p1.idx, p2.idx)) %>% list.append(list(route_node=new_route_node, load=total_load, processing_time=total_processing_time, distance=total_distance, distance_time=distance_time_cost(total_distance))) } } } return(route) } ## 繪製結果 plot_vrp_route <- function(route, points) { df.route <- route %>% list.map(list(spot_idx=str_c(route_node, collapse=","), load=load)) %>% list.stack() %>% mutate(id=1:length(route), Index=paste0("0,", spot_idx, ",0")) %>% cSplit(c("Index"), direction="long") %>% inner_join(points, by="Index") target.site.geo <- points %>% filter(Index == 0) ls.route <- split(df.route, df.route$id) names(ls.route) <- NULL sl.route <- SpatialLines(llply(ls.route, points2spline, "Lng", "Lat", "id")) ids <- data.frame(names(sl.route)) colnames(ids) <- "id" sldf.route <- SpatialLinesDataFrame(sl.route, ids, match.ID = "id") factpal <- colorFactor(brewer.pal(8, "Dark2"), domain=df.route$id) m <- leaflet() %>% addTiles( 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=8&x={x}&y={y}&z={z}', tileOptions(tileSize=256, minZoom=9, maxZoom=17), group="高德地圖" ) %>% addCircleMarkers(data=target.site.geo, radius=15, stroke=FALSE, fill=TRUE, fillColor="#E41A1C", fillOpacity=0.8, group="Site") %>% addCircleMarkers(lng=~Lng, lat=~Lat, radius=3, data=df.route, color=~factpal(id), group="Spot") %>% addPolylines(data=sldf.route, weight=3, color=~factpal(id), group="配送路線") %>% fitBounds(sldf.route@bbox["x", "min"], sldf.route@bbox["y", "min"], sldf.route@bbox["x", "max"], sldf.route@bbox["y", "max"]) %>% addLayersControl( baseGroups = c("配送路線"), overlayGroups = c("Site", "Spot", "高德地圖"), options = layersControlOptions(collapsed = FALSE) ) return(m) } ## 普通VRP主函數 vrp_saving_method <- function(points) { points.matrix <- as.matrix(points %>% select(Lng, Lat)) cost.matrix <- get_cost_matrix(points.matrix) demand.vec <- points %>% filter(Index != 0) %>% select(ID, Num) init_route <- get_vrp_init_solution(demand.vec, cost.matrix) saving.matrix <- get_saving_matrix(cost.matrix) saving_route <- get_vrp_saving_solution(init_route, saving.matrix) return(saving_route) } ## 取出一個例子 target.site <- "A083" points <- get_sub_data(target.site, df.site, df.spot, df.e.order) saving_route <- vrp_saving_method(points) plot_vrp_route(saving_route, points)
Saving Method規劃的結果整體來看質量仍是很不錯的。簡單說一下實現Saving Method的思路:構造cost矩陣和demand向量;構造初始解,即從site派專車送貨到spot而後返回site;算saving matrix;將saving從大到小排序,逐個取出,判斷這個saving對應的兩個路線合併後車輛Capacity或時間窗等約束是否被知足,若知足則合併路徑。其餘常見的構造性的啓發式算法還有Insert和Sweep;而後有一些聽過大名的模擬退火、禁忌搜索等算法,不甚瞭解。因爲學藝不精,時間有限,此題只能作到這裏打住了。