kaggle比賽實踐M5-baseline研讀(三)M5 best till now public python lgbm version with score 0.60869

 

你們能夠參考一下這個discusion:ide

import pandas as pd
import numpy as np
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
import matplotlib.pyplot as pltimport lightgbm as lgb
from sklearn import preprocessing, metrics
import gc
import joblib
import warnings
warnings.filterwarnings('ignore')

1. 加載數據

INPUT_DIR_PATH = '../input/m5-forecasting-accuracy/'

一個能夠優化內存的方法:優化

def reduce_mem_usage(df, verbose=True):
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    start_mem = df.memory_usage().sum() / 1024**2    
    for col in df.columns:
        col_type = df[col].dtypes
        if col_type in numerics: 
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)    
    end_mem = df.memory_usage().sum() / 1024**2
    if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem))
    return df

加載數據this

def read_data():
    sell_prices_df = pd.read_csv(INPUT_DIR_PATH + 'sell_prices.csv')
    sell_prices_df = reduce_mem_usage(sell_prices_df)
    print('Sell prices has {} rows and {} columns'.format(sell_prices_df.shape[0], sell_prices_df.shape[1]))

    calendar_df = pd.read_csv(INPUT_DIR_PATH + 'calendar.csv')
    calendar_df = reduce_mem_usage(calendar_df)
    print('Calendar has {} rows and {} columns'.format(calendar_df.shape[0], calendar_df.shape[1]))

    sales_train_validation_df = pd.read_csv(INPUT_DIR_PATH + 'sales_train_validation.csv')
    print('Sales train validation has {} rows and {} columns'.format(sales_train_validation_df.shape[0], sales_train_validation_df.shape[1]))

    submission_df = pd.read_csv(INPUT_DIR_PATH + 'sample_submission.csv')
    return sell_prices_df, calendar_df, sales_train_validation_df, submission_df、

sell_prices_df, calendar_df, sales_train_validation_df, submission_df = read_data()

 

 咱們依舊再看一遍,各個數據:lua

 

 

 

 

 

 2.catergory類型轉換

def encode_categorical(df, cols,verbose=True):
    start_mem = df.memory_usage().sum() / 1024**2    
    for col in cols:
        # Leave NaN as it is.
        le = preprocessing.LabelEncoder()
#         not_null = df[col][df[col].notnull()]
#         df[col] = pd.Series(le.fit_transform(not_null), index=not_null.index)
        df[col]=df[col].astype('category').cat.codes
        df[col] -= df[col].min()
        
    end_mem = df.memory_usage().sum() / 1024**2
    if verbose: print('encode_categorical make Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem))
    return df
calendar_df = encode_categorical(calendar_df, ["event_name_1", "event_type_1", "event_name_2", "event_type_2"]).pipe(reduce_mem_usage)
sales_train_validation_df = encode_categorical(sales_train_validation_df, ["item_id", "dept_id", "cat_id", "store_id", "state_id"]).pipe(reduce_mem_usage)
sell_prices_df = encode_categorical(sell_prices_df, ["item_id", "store_id"]).pipe(reduce_mem_usage)

 

 

 

 

 

 3.數據合併

設定變量spa

NUM_ITEMS = sales_train_validation_df.shape[0]  # 30490
DAYS_PRED = 28
nrows = 365 * 2 * NUM_ITEMS
nrows

 

 不知道爲何最後做者使用這個數值:3d

nrows = 27500000

合併數據code

def melt_and_merge(calendar, sell_prices, sales_train_validation, submission, nrows = 55000000, merge = False):
    
    # melt sales data, get it ready for training
    sales_train_validation = pd.melt(sales_train_validation, id_vars = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'], var_name = 'day', value_name = 'demand')
    print('Melted sales train validation has {} rows and {} columns'.format(sales_train_validation.shape[0], sales_train_validation.shape[1]))
        #melt後 實際數據30490 * 1913=58327370
    sales_train_validation = reduce_mem_usage(sales_train_validation)
    
    sales_train_validation = sales_train_validation.iloc[-nrows:,:]
    
    
    # seperate test dataframes
    test1_rows = [row for row in submission['id'] if 'validation' in row]
    test2_rows = [row for row in submission['id'] if 'evaluation' in row]
    test1 = submission[submission['id'].isin(test1_rows)]
    test2 = submission[submission['id'].isin(test2_rows)]
    
    # change column names
    test1.columns = ['id', 'd_1914', 'd_1915', 'd_1916', 'd_1917', 'd_1918', 'd_1919', 'd_1920', 'd_1921', 'd_1922', 'd_1923', 'd_1924', 'd_1925', 'd_1926', 'd_1927', 'd_1928', 'd_1929', 'd_1930', 'd_1931', 
                      'd_1932', 'd_1933', 'd_1934', 'd_1935', 'd_1936', 'd_1937', 'd_1938', 'd_1939', 'd_1940', 'd_1941']
    test2.columns = ['id', 'd_1942', 'd_1943', 'd_1944', 'd_1945', 'd_1946', 'd_1947', 'd_1948', 'd_1949', 'd_1950', 'd_1951', 'd_1952', 'd_1953', 'd_1954', 'd_1955', 'd_1956', 'd_1957', 'd_1958', 'd_1959', 
                      'd_1960', 'd_1961', 'd_1962', 'd_1963', 'd_1964', 'd_1965', 'd_1966', 'd_1967', 'd_1968', 'd_1969']
    
    # get product table
    product = sales_train_validation[['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id']].drop_duplicates()
    
    # merge with product table
        #test1
    test1 = test1.merge(product, how = 'left', on = 'id')
        #test2
    test2['id'] = test2['id'].str.replace('_evaluation','_validation')
    test2 = test2.merge(product, how = 'left', on = 'id')
    test2['id'] = test2['id'].str.replace('_validation','_evaluation')
        
    # 
    test1 = pd.melt(test1, id_vars = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'], var_name = 'day', value_name = 'demand')
    test2 = pd.melt(test2, id_vars = ['id', 'item_id', 'dept_id', 'cat_id', 'store_id', 'state_id'], var_name = 'day', value_name = 'demand')
    
    sales_train_validation['part'] = 'train'
    test1['part'] = 'test1'
    test2['part'] = 'test2'
    
    data = pd.concat([sales_train_validation, test1, test2], axis = 0)
    
    del sales_train_validation, test1, test2
    
    print('pd.concat([sales_train_validation, test1, test2], axis = 0)=>data',data.shape)
    
    # get only a sample for fst training
#     data = data.loc[nrows:]
    
    # drop some calendar features
    calendar.drop(['weekday', 'wday', 'month', 'year'], inplace = True, axis = 1)
    
    # delete test2 for now
    data = data[data['part'] != 'test2']
    
    if merge:
        # notebook crash with the entire dataset (maybee use tensorflow, dask, pyspark xD)
        data = pd.merge(data, calendar, how = 'left', left_on = ['day'], right_on = ['d'])
        data.drop(['d', 'day'], inplace = True, axis = 1)
        # get the sell price data (this feature should be very important)
        data = data.merge(sell_prices, on = ['store_id', 'item_id', 'wm_yr_wk'], how = 'left')
        print('Our final dataset to train has {} rows and {} columns'.format(data.shape[0], data.shape[1]))
    else: 
        pass
    
    gc.collect()
    print('finish!')
    return data
data = melt_and_merge(calendar_df, sell_prices_df, sales_train_validation_df, submission_df, nrows = nrows, merge = True)

 

特徵工程:orm

def simple_fe(data):
    
    # rolling demand features
    for val in [28, 29, 30]:
        data[f"shift_t{val}"] = data.groupby(["id"])["demand"].transform(lambda x: x.shift(val))
    for val in [7, 30, 60, 90, 180]:
        data[f"rolling_std_t{val}"] = data.groupby(["id"])["demand"].transform(lambda x: x.shift(28).rolling(val).std())
        data[f"rolling_mean_t{val}"] = data.groupby(["id"])["demand"].transform(lambda x: x.shift(28).rolling(val).mean())

    data["rolling_skew_t30"] = data.groupby(["id"])["demand"].transform( lambda x: x.shift(28).rolling(30).skew())
    data["rolling_kurt_t30"] = data.groupby(["id"])["demand"].transform(lambda x: x.shift(28).rolling(30).kurt())
    
    # price features
    data['lag_price_t1'] = data.groupby(['id'])['sell_price'].transform(lambda x: x.shift(1))
    data['price_change_t1'] = (data['lag_price_t1'] - data['sell_price']) / (data['lag_price_t1'])
    data['rolling_price_max_t365'] = data.groupby(['id'])['sell_price'].transform(lambda x: x.shift(1).rolling(365).max())
    data['price_change_t365'] = (data['rolling_price_max_t365'] - data['sell_price']) / (data['rolling_price_max_t365'])
    data['rolling_price_std_t7'] = data.groupby(['id'])['sell_price'].transform(lambda x: x.rolling(7).std())
    data['rolling_price_std_t30'] = data.groupby(['id'])['sell_price'].transform(lambda x: x.rolling(30).std())
    data.drop(['rolling_price_max_t365', 'lag_price_t1'], inplace = True, axis = 1)
    
    # time features
    data['date'] = pd.to_datetime(data['date'])
    attrs = ["year", "quarter", "month", "week", "day", "dayofweek", "is_year_end", "is_year_start", "is_quarter_end", \
        "is_quarter_start", "is_month_end","is_month_start",
    ]

    for attr in attrs:
        dtype = np.int16 if attr == "year" else np.int8
        data[attr] = getattr(data['date'].dt, attr).astype(dtype)
    data["is_weekend"] = data["dayofweek"].isin([5, 6]).astype(np.int8)
    
    return data

須要的特徵字段:blog

features = [
    "item_id", "dept_id", "cat_id", "store_id", "state_id", "event_name_1", "event_type_1", "snap_CA", "snap_TX", \
    "snap_WI", "sell_price", \
    # demand features.
    "shift_t28", "rolling_std_t7", "rolling_std_t30", "rolling_std_t90", "rolling_std_t180", \
    "rolling_mean_t7", "rolling_mean_t30", "rolling_mean_t60", \
    # price features
    "price_change_t1", "price_change_t365", "rolling_price_std_t7",
    # time features.
    "year", "month", "dayofweek",
]

訓練與預測:ip

def run_lgb(data):
    
    # going to evaluate with the last 28 days
    x_train = data[data['date'] <= '2016-03-27']
    y_train = x_train['demand']
    x_val = data[(data['date'] > '2016-03-27') & (data['date'] <= '2016-04-24')]
    y_val = x_val['demand']
    test = data[(data['date'] > '2016-04-24')]
    del data
    gc.collect()
    
    params = {
#         'boosting_type': 'gbdt',
        'metric': 'rmse',
        'objective': 'poisson',
        'n_jobs': -1,
        'seed': 20,
        'learning_rate': 0.1,
        'alpha': 0.1,
        'lambda': 0.1,
        'bagging_fraction': 0.66,
        'bagging_freq': 2, 
        'colsample_bytree': 0.77}

    train_set = lgb.Dataset(x_train[features], y_train)
    val_set = lgb.Dataset(x_val[features], y_val)
    
    del x_train, y_train
    
    
    model = lgb.train(params, train_set, num_boost_round = 2000, early_stopping_rounds = 200, valid_sets = [train_set, val_set], verbose_eval = 100)
    joblib.dump(model, 'lgbm_0.sav')
    
    val_pred = model.predict(x_val[features], num_iteration=model.best_iteration)
    val_score = np.sqrt(metrics.mean_squared_error(val_pred, y_val))
    print(f'Our val rmse score is {val_score}')
    y_pred = model.predict(test[features], num_iteration=model.best_iteration)
    test['demand'] = y_pred
    return test


def predict(test, submission):
    predictions = test[['id', 'date', 'demand']]
    predictions = pd.pivot(predictions, index = 'id', columns = 'date', values = 'demand').reset_index()
    predictions.columns = ['id'] + ['F' + str(i + 1) for i in range(28)]

    evaluation_rows = [row for row in submission['id'] if 'evaluation' in row] 
    evaluation = submission[submission['id'].isin(evaluation_rows)]

    validation = submission[['id']].merge(predictions, on = 'id')
    final = pd.concat([validation, evaluation])
    final.to_csv('submission.csv', index = False)
    


def transform_train_and_eval(data):
#     data = transform(data)
    data = simple_fe(data)
    # reduce memory for new features so we can train
    data = reduce_mem_usage(data)
    test = run_lgb(data)
    predict(test, submission_df)
    

結果:

transform_train_and_eval(data)

 

大多數人都覺得是才智成就了科學家,他們錯了,是品格。---愛因斯坦
相關文章
相關標籤/搜索