轉載請註明出處:http://www.javashuo.com/article/p-byxaliow-ke.htmlhtml
區塊鏈的目的,是可以安全可靠的存儲交易,好比咱們常見的比特幣的交易,這裏咱們會以比特幣爲例實現區塊鏈上的通用交易。上一節用簡單的數據結構完成了區塊鏈的公鏈,本節在此基礎上對區塊鏈的交易部分進行實現。實現公鏈數據庫
在區塊鏈中,交易一旦被建立,就沒有任何人可以再去修改或是刪除它,本節將實現一個交易的基本框架,具體交易細節將會在以後給出。數組
以比特幣爲例,不一樣於通常概念的帳戶模型,其交易採用的是UTXO模型。咱們所須要的信息,都間接的包含在了每一筆交易中,包括用戶的餘額信息。安全
對於每一筆交易,你能夠想象成一個通道,通道的左端有若干個輸入信息,通道的右端會有若干輸出信息。輸入信息表明的意義是,該交易所用的幣是從何而來,一條交易能夠有0到多個幣源(0是特殊狀況,即被挖出的礦,由於沒有用戶來源,因此沒有輸入信息)。輸出信息表明的意義是,進行該交易後,數字貨幣變更到哪裏去了。所以,一條交易信息中貨幣的輸入數量與輸出數量應該是等價的,數字貨幣的來源總和,等於數字貨幣的輸出總和。不難想象,與傳統的帳戶模型相比,在UTXO模型中用戶的帳戶餘額是記錄在交易的輸出部分。數據結構
舉個最簡單的例子,假設A須要給B支付了一個比特幣,將執行如下流程:app
這樣咱們就實現了一個簡單的交易,在這場交易中有貨幣的來源,貨幣有明確的去向,同時攜帶了咱們正在進行的交易信息。框架
以後咱們將結合代碼,讓這種邏輯變得更加清晰,下面這張圖是對UTXO模型的簡單描述:
Coinbase交易是特殊的一種交易,它表示礦工挖出了新的礦,做用是將新挖出的礦加入公鏈中並將輸出指向挖礦的礦工。ide
該例子表示,張三挖礦獲得12.5個比特幣,而後支付了2.5個給李四,本身剩餘10比特幣,以後張三李四各支付2.5個比特幣給王五,最終張三還剩7.5個比特幣,李四餘額用盡,王五剩餘5個比特幣,總和12.5等於張三挖出的總礦幣。函數
與以前已經完成的實現公鏈的代碼相比,區塊鏈的交易須要新建一個transaction.go文件,用來實現交易邏輯。其他文件中的代碼,會跟隨交易機制的加入進行微小的調整。工具
如下爲transaction.go的代碼:
package main import ( "bytes" "crypto/sha256" "encoding/gob" "encoding/hex" "fmt" "log" ) const subsidy = 10 // Transaction represents a Bitcoin transaction type Transaction struct { ID []byte Vin []TXInput Vout []TXOutput } // IsCoinbase checks whether the transaction is coinbase func (tx Transaction) IsCoinbase() bool { return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1 } // SetID sets ID of a transaction func (tx *Transaction) SetID() { var encoded bytes.Buffer var hash [32]byte enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { log.Panic(err) } hash = sha256.Sum256(encoded.Bytes()) tx.ID = hash[:] } // TXInput represents a transaction input type TXInput struct { Txid []byte Vout int ScriptSig string } // TXOutput represents a transaction output type TXOutput struct { Value int ScriptPubKey string } // CanUnlockOutputWith checks whether the address initiated the transaction func (in *TXInput) CanUnlockOutputWith(unlockingData string) bool { return in.ScriptSig == unlockingData } // CanBeUnlockedWith checks if the output can be unlocked with the provided data func (out *TXOutput) CanBeUnlockedWith(unlockingData string) bool { return out.ScriptPubKey == unlockingData } // NewCoinbaseTX creates a new coinbase transaction func NewCoinbaseTX(to, data string) *Transaction { if data == "" { data = fmt.Sprintf("Reward to '%s'", to) } txin := TXInput{[]byte{}, -1, data} txout := TXOutput{subsidy, to} tx := Transaction{nil, []TXInput{txin}, []TXOutput{txout}} tx.SetID() return &tx } // NewUTXOTransaction creates a new transaction func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction { var inputs []TXInput var outputs []TXOutput acc, validOutputs := bc.FindSpendableOutputs(from, amount) if acc < amount { log.Panic("ERROR: Not enough funds") } // Build a list of inputs for txid, outs := range validOutputs { txID, err := hex.DecodeString(txid) if err != nil { log.Panic(err) } for _, out := range outs { input := TXInput{txID, out, from} inputs = append(inputs, input) } } // Build a list of outputs outputs = append(outputs, TXOutput{amount, to}) if acc > amount { outputs = append(outputs, TXOutput{acc - amount, from}) // a change } tx := Transaction{nil, inputs, outputs} tx.SetID() return &tx }
代碼主要包含如下內容:
關於TXInput與TXOutput中地址的問題,由於目前尚未實現區塊鏈中的地址,因此本節涉及的地址直接用字符串代替,驗證地址也只是進行了字符串對比。地址是必要的,它標註了當前的餘額屬於誰,這裏由於剛實現交易機制,尚未引入真正的地址機制,因此是存在漏洞的,用戶只要知道有哪些用戶就能夠直接往本身地址轉錢,在下一節會實現地址機制進行完善。
在transaction.go中實現了交易的結構體,如何建立一條新的交易,以及簡單的交易對象判斷。在其他文件中,block.go文件作了一些改動,主要是將本來的data字符串換成了Transaction交易。一樣的,下一節中咱們會將本節的地址字符串換成相應機制的地址,如下是改動後的block.go文件:
package main import ( "bytes" "crypto/sha256" "encoding/gob" "log" "time" ) // Block keeps block headers type Block struct { Timestamp int64 Transactions []*Transaction PrevBlockHash []byte Hash []byte Nonce int } // Serialize serializes the block func (b *Block) Serialize() []byte { var result bytes.Buffer encoder := gob.NewEncoder(&result) err := encoder.Encode(b) if err != nil { log.Panic(err) } return result.Bytes() } // HashTransactions returns a hash of the transactions in the block func (b *Block) HashTransactions() []byte { var txHashes [][]byte var txHash [32]byte for _, tx := range b.Transactions { txHashes = append(txHashes, tx.ID) } txHash = sha256.Sum256(bytes.Join(txHashes, []byte{})) return txHash[:] } // NewBlock creates and returns Block func NewBlock(transactions []*Transaction, prevBlockHash []byte) *Block { block := &Block{time.Now().Unix(), transactions, prevBlockHash, []byte{}, 0} pow := NewProofOfWork(block) nonce, hash := pow.Run() block.Hash = hash[:] block.Nonce = nonce return block } // NewGenesisBlock creates and returns genesis Block func NewGenesisBlock(coinbase *Transaction) *Block { return NewBlock([]*Transaction{coinbase}, []byte{}) } // DeserializeBlock deserializes a block func DeserializeBlock(d []byte) *Block { var block Block decoder := gob.NewDecoder(bytes.NewReader(d)) err := decoder.Decode(&block) if err != nil { log.Panic(err) } return &block }
添加了HashTransactions函數,用來將交易轉換成哈希值,其他函數隨結構體中Data->Transactions的變更相應調整。
在blockchain.go中,涉及到尋找用戶餘額(未花費交易輸出)操做,須要多作一些調整:
package main import ( "encoding/hex" "fmt" "log" "os" "bolt-master" ) const dbFile = "blockchain.db" const blocksBucket = "blocks" const genesisCoinbaseData = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks" // Blockchain implements interactions with a DB type Blockchain struct { tip []byte db *bolt.DB } // BlockchainIterator is used to iterate over blockchain blocks type BlockchainIterator struct { currentHash []byte db *bolt.DB } // MineBlock mines a new block with the provided transactions func (bc *Blockchain) MineBlock(transactions []*Transaction) { var lastHash []byte err := bc.db.View(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) lastHash = b.Get([]byte("l")) return nil }) if err != nil { log.Panic(err) } newBlock := NewBlock(transactions, lastHash) err = bc.db.Update(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) err := b.Put(newBlock.Hash, newBlock.Serialize()) if err != nil { log.Panic(err) } err = b.Put([]byte("l"), newBlock.Hash) if err != nil { log.Panic(err) } bc.tip = newBlock.Hash return nil }) } // FindUnspentTransactions returns a list of transactions containing unspent outputs func (bc *Blockchain) FindUnspentTransactions(address string) []Transaction { var unspentTXs []Transaction spentTXOs := make(map[string][]int) bci := bc.Iterator() for { block := bci.Next() for _, tx := range block.Transactions { txID := hex.EncodeToString(tx.ID) Outputs: for outIdx, out := range tx.Vout { // Was the output spent? if spentTXOs[txID] != nil { for _, spentOut := range spentTXOs[txID] { if spentOut == outIdx { continue Outputs } } } if out.CanBeUnlockedWith(address) { unspentTXs = append(unspentTXs, *tx) } } if tx.IsCoinbase() == false { for _, in := range tx.Vin { if in.CanUnlockOutputWith(address) { inTxID := hex.EncodeToString(in.Txid) spentTXOs[inTxID] = append(spentTXOs[inTxID], in.Vout) } } } } if len(block.PrevBlockHash) == 0 { break } } return unspentTXs } // FindUTXO finds and returns all unspent transaction outputs func (bc *Blockchain) FindUTXO(address string) []TXOutput { var UTXOs []TXOutput unspentTransactions := bc.FindUnspentTransactions(address) for _, tx := range unspentTransactions { for _, out := range tx.Vout { if out.CanBeUnlockedWith(address) { UTXOs = append(UTXOs, out) } } } return UTXOs } // FindSpendableOutputs finds and returns unspent outputs to reference in inputs func (bc *Blockchain) FindSpendableOutputs(address string, amount int) (int, map[string][]int) { unspentOutputs := make(map[string][]int) unspentTXs := bc.FindUnspentTransactions(address) accumulated := 0 Work: for _, tx := range unspentTXs { txID := hex.EncodeToString(tx.ID) for outIdx, out := range tx.Vout { if out.CanBeUnlockedWith(address) && accumulated < amount { accumulated += out.Value unspentOutputs[txID] = append(unspentOutputs[txID], outIdx) if accumulated >= amount { break Work } } } } return accumulated, unspentOutputs } // Iterator returns a BlockchainIterat func (bc *Blockchain) Iterator() *BlockchainIterator { bci := &BlockchainIterator{bc.tip, bc.db} return bci } // Next returns next block starting from the tip func (i *BlockchainIterator) Next() *Block { var block *Block err := i.db.View(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) encodedBlock := b.Get(i.currentHash) block = DeserializeBlock(encodedBlock) return nil }) if err != nil { log.Panic(err) } i.currentHash = block.PrevBlockHash return block } func dbExists() bool { if _, err := os.Stat(dbFile); os.IsNotExist(err) { return false } return true } // NewBlockchain creates a new Blockchain with genesis Block func NewBlockchain(address string) *Blockchain { if dbExists() == false { fmt.Println("No existing blockchain found. Create one first.") os.Exit(1) } var tip []byte db, err := bolt.Open(dbFile, 0600, nil) if err != nil { log.Panic(err) } err = db.Update(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) tip = b.Get([]byte("l")) return nil }) if err != nil { log.Panic(err) } bc := Blockchain{tip, db} return &bc } // CreateBlockchain creates a new blockchain DB func CreateBlockchain(address string) *Blockchain { if dbExists() { fmt.Println("Blockchain already exists.") os.Exit(1) } var tip []byte db, err := bolt.Open(dbFile, 0600, nil) if err != nil { log.Panic(err) } err = db.Update(func(tx *bolt.Tx) error { cbtx := NewCoinbaseTX(address, genesisCoinbaseData) genesis := NewGenesisBlock(cbtx) b, err := tx.CreateBucket([]byte(blocksBucket)) if err != nil { log.Panic(err) } err = b.Put(genesis.Hash, genesis.Serialize()) if err != nil { log.Panic(err) } err = b.Put([]byte("l"), genesis.Hash) if err != nil { log.Panic(err) } tip = genesis.Hash return nil }) if err != nil { log.Panic(err) } bc := Blockchain{tip, db} return &bc }
代碼的主要變更是新增了三個關於交易的函數:
其次,本來的Addblock被改爲了更具體的Mineblock挖礦函數,新增了Createblockchain函數和dbExists函數,用來判斷數據庫是否存在,只有當數據庫中沒有公鏈時才能建立新的區塊鏈。
在proofofwork文件中,僅在prepareData時將Data換成了HashTransactions,在挖礦時再也不打印Data部分,proofofwork.go完整代碼以下:
package main import ( "bytes" "crypto/sha256" "fmt" "math" "math/big" ) var ( maxNonce = math.MaxInt64 ) const targetBits = 24 // ProofOfWork represents a proof-of-work type ProofOfWork struct { block *Block target *big.Int } // NewProofOfWork builds and returns a ProofOfWork func NewProofOfWork(b *Block) *ProofOfWork { target := big.NewInt(1) target.Lsh(target, uint(256-targetBits)) pow := &ProofOfWork{b, target} return pow } func (pow *ProofOfWork) prepareData(nonce int) []byte { data := bytes.Join( [][]byte{ pow.block.PrevBlockHash, pow.block.HashTransactions(), IntToHex(pow.block.Timestamp), IntToHex(int64(targetBits)), IntToHex(int64(nonce)), }, []byte{}, ) return data } // Run performs a proof-of-work func (pow *ProofOfWork) Run() (int, []byte) { var hashInt big.Int var hash [32]byte nonce := 0 fmt.Printf("Mining a new block") for nonce < maxNonce { data := pow.prepareData(nonce) hash = sha256.Sum256(data) // fmt.Printf("\r%x", hash) hashInt.SetBytes(hash[:]) if hashInt.Cmp(pow.target) == -1 { break } else { nonce++ } } // fmt.Print("\n\n") return nonce, hash[:] } // Validate validates block's PoW func (pow *ProofOfWork) Validate() bool { var hashInt big.Int data := pow.prepareData(pow.block.Nonce) hash := sha256.Sum256(data) hashInt.SetBytes(hash[:]) isValid := hashInt.Cmp(pow.target) == -1 return isValid }
cli.go文件隨底層的一些變更,作出相應的業務邏輯改變,變更主要用於實現命令行操做,不涉及區塊鏈的邏輯:
package main import ( "flag" "fmt" "log" "os" "strconv" ) // CLI responsible for processing command line arguments type CLI struct{} func (cli *CLI) createBlockchain(address string) { bc := CreateBlockchain(address) bc.db.Close() fmt.Println("Done!") } func (cli *CLI) getBalance(address string) { bc := NewBlockchain(address) defer bc.db.Close() balance := 0 UTXOs := bc.FindUTXO(address) for _, out := range UTXOs { balance += out.Value } fmt.Printf("Balance of '%s': %d\n", address, balance) } func (cli *CLI) printUsage() { fmt.Println("Usage:") fmt.Println(" getbalance -address ADDRESS - Get balance of ADDRESS") fmt.Println(" createblockchain -address ADDRESS - Create a blockchain and send genesis block reward to ADDRESS") fmt.Println(" printchain - Print all the blocks of the blockchain") fmt.Println(" send -from FROM -to TO -amount AMOUNT - Send AMOUNT of coins from FROM address to TO") } func (cli *CLI) validateArgs() { if len(os.Args) < 2 { cli.printUsage() os.Exit(1) } } func (cli *CLI) printChain() { // TODO: Fix this bc := NewBlockchain("") defer bc.db.Close() bci := bc.Iterator() for { block := bci.Next() fmt.Printf("Prev. hash: %x\n", block.PrevBlockHash) fmt.Printf("Hash: %x\n", block.Hash) pow := NewProofOfWork(block) fmt.Printf("PoW: %s\n", strconv.FormatBool(pow.Validate())) fmt.Println() if len(block.PrevBlockHash) == 0 { break } } } func (cli *CLI) send(from, to string, amount int) { bc := NewBlockchain(from) defer bc.db.Close() tx := NewUTXOTransaction(from, to, amount, bc) bc.MineBlock([]*Transaction{tx}) fmt.Println("Success!") } // Run parses command line arguments and processes commands func (cli *CLI) Run() { cli.validateArgs() getBalanceCmd := flag.NewFlagSet("getbalance", flag.ExitOnError) createBlockchainCmd := flag.NewFlagSet("createblockchain", flag.ExitOnError) sendCmd := flag.NewFlagSet("send", flag.ExitOnError) printChainCmd := flag.NewFlagSet("printchain", flag.ExitOnError) getBalanceAddress := getBalanceCmd.String("address", "", "The address to get balance for") createBlockchainAddress := createBlockchainCmd.String("address", "", "The address to send genesis block reward to") sendFrom := sendCmd.String("from", "", "Source wallet address") sendTo := sendCmd.String("to", "", "Destination wallet address") sendAmount := sendCmd.Int("amount", 0, "Amount to send") switch os.Args[1] { case "getbalance": err := getBalanceCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "createblockchain": err := createBlockchainCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "printchain": err := printChainCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "send": err := sendCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } default: cli.printUsage() os.Exit(1) } if getBalanceCmd.Parsed() { if *getBalanceAddress == "" { getBalanceCmd.Usage() os.Exit(1) } cli.getBalance(*getBalanceAddress) } if createBlockchainCmd.Parsed() { if *createBlockchainAddress == "" { createBlockchainCmd.Usage() os.Exit(1) } cli.createBlockchain(*createBlockchainAddress) } if printChainCmd.Parsed() { cli.printChain() } if sendCmd.Parsed() { if *sendFrom == "" || *sendTo == "" || *sendAmount <= 0 { sendCmd.Usage() os.Exit(1) } cli.send(*sendFrom, *sendTo, *sendAmount) } }
在main.go中,咱們將全部的操做有交給cli對象進行,本來舊main.go中的新建創世塊操做,也放到了cli.go的邏輯中,因此只須要如下代碼:
package main func main() { bc := NewBlockchain() defer bc.db.Close() cli := CLI{bc} cli.Run() }
沒有新的工具函數引入,utils.go文件不變。