本文主要介紹一個簡單的使用SDRAM器件時,地址之間的映射關係以及啓動代碼的關係linux
首先,看一個彙編文件,是啓動代碼。sass
@*************************************************************************
@ File:head.S
@ 功能:設置SDRAM,將程序複製到SDRAM,而後跳到SDRAM繼續執行
@*************************************************************************
.equ MEM_CTL_BASE, 0x48000000
.equ SDRAM_BASE, 0x30000000
.text
.global _start
_start:
bl disable_watch_dog @ 關閉WATCHDOG,不然CPU會不斷重啓
bl memsetup @ 設置存儲控制器
bl copy_steppingstone_to_sdram @ 複製代碼到SDRAM中
ldr pc, =on_sdram @ 跳到SDRAM中繼續執行
on_sdram:
ldr sp, =0x34000000 @ 設置堆棧
bl main
halt_loop:
b halt_loop
disable_watch_dog:
@ 往WATCHDOG寄存器寫0便可
mov r1, #0x53000000
mov r2, #0x0
str r2, [r1]
mov pc, lr @ 返回
copy_steppingstone_to_sdram:
@ 將Steppingstone的4K數據所有複製到SDRAM中去
@ Steppingstone起始地址爲0x00000000,SDRAM中起始地址爲0x30000000
mov r1, #0
ldr r2, =SDRAM_BASE
mov r3, #4*1024
1:
ldr r4, [r1],#4 @ 從Steppingstone讀取4字節的數據,並讓源地址加4
str r4, [r2],#4 @ 將此4字節的數據複製到SDRAM中,並讓目地地址加4
cmp r1, r3 @ 判斷是否完成:源地址等於Steppingstone的未地址?
bne 1b @ 若沒有複製完,繼續
mov pc, lr @ 返回
memsetup:
@ 設置存儲控制器以便使用SDRAM等外設
mov r1, #MEM_CTL_BASE @ 存儲控制器的13個寄存器的開始地址
adrl r2, mem_cfg_val @ 這13個值的起始存儲地址
add r3, r1, #52 @ 13*4 = 54
1:
ldr r4, [r2], #4 @ 讀取設置值,並讓r2加4
str r4, [r1], #4 @ 將此值寫入寄存器,並讓r1加4
cmp r1, r3 @ 判斷是否設置完全部13個寄存器
bne 1b @ 若沒有寫成,繼續
mov pc, lr @ 返回
.align 4
mem_cfg_val:
@ 存儲控制器13個寄存器的設置值
.long 0x22011110 @ BWSCON
.long 0x00000700 @ BANKCON0
.long 0x00000700 @ BANKCON1
.long 0x00000700 @ BANKCON2
.long 0x00000700 @ BANKCON3
.long 0x00000700 @ BANKCON4
.long 0x00000700 @ BANKCON5
.long 0x00018005 @ BANKCON6
.long 0x00018005 @ BANKCON7
.long 0x008C07A3 @ REFRESH
.long 0x000000B1 @ BANKSIZE
.long 0x00000030 @ MRSRB6
.long 0x00000030 @ MRSRB7
以及一個Makefileoop
sdram.bin : head.S leds.c arm-linux-gcc -c -o head.o head.S arm-linux-gcc -c -o leds.o leds.c arm-linux-ld -Ttext 0x30000000 head.o leds.o -o sdram_elf arm-linux-objcopy -O binary -S sdram_elf sdram.bin arm-linux-objdump -D -m arm sdram_elf > sdram.dis clean: rm -f sdram.dis sdram.bin sdram_elf *.o
還有它的反彙編文件spa
sdram_elf: file format elf32-littlearm Disassembly of section .text: 30000000 <_start>: 30000000: eb000005 bl 3000001c <disable_watch_dog>
30000004: eb000010 bl 3000004c <memsetup>
30000008: eb000007 bl 3000002c <copy_steppingstone_to_sdram> 3000000c: e59ff090 ldr pc, [pc, #144] ; 300000a4 <mem_cfg_val+0x34>
30000010 <on_sdram>: 30000010: e3a0d30d mov sp, #872415232 ; 0x34000000
30000014: eb000033 bl 300000e8 <main>
30000018 <halt_loop>: 30000018: eafffffe b 30000018 <halt_loop> 3000001c <disable_watch_dog>: 3000001c: e3a01453 mov r1, #1392508928 ; 0x53000000
30000020: e3a02000 mov r2, #0
30000024: e5812000 str r2, [r1] 30000028: e1a0f00e mov pc, lr 3000002c <copy_steppingstone_to_sdram>: 3000002c: e3a01000 mov r1, #0
30000030: e3a02203 mov r2, #805306368 ; 0x30000000
30000034: e3a03a01 mov r3, #4096 ; 0x1000
30000038: e4914004 ldr r4, [r1], #4 3000003c: e4824004 str r4, [r2], #4
30000040: e1510003 cmp r1, r3 30000044: 1afffffb bne 30000038 <copy_steppingstone_to_sdram+0xc>
30000048: e1a0f00e mov pc, lr 3000004c <memsetup>: 3000004c: e3a01312 mov r1, #1207959552 ; 0x48000000
30000050: e28f2018 add r2, pc, #24
30000054: e1a00000 nop ; (mov r0, r0) 30000058: e2813034 add r3, r1, #52 ; 0x34 3000005c: e4924004 ldr r4, [r2], #4
30000060: e4814004 str r4, [r1], #4
30000064: e1510003 cmp r1, r3 30000068: 1afffffb bne 3000005c <memsetup+0x10> 3000006c: e1a0f00e mov pc, lr 30000070 <mem_cfg_val>: 30000070: 22011110 andcs r1, r1, #4
30000074: 00000700 andeq r0, r0, r0, lsl #14
30000078: 00000700 andeq r0, r0, r0, lsl #14 3000007c: 00000700 andeq r0, r0, r0, lsl #14
30000080: 00000700 andeq r0, r0, r0, lsl #14
30000084: 00000700 andeq r0, r0, r0, lsl #14
30000088: 00000700 andeq r0, r0, r0, lsl #14 3000008c: 00018005 andeq r8, r1, r5 30000090: 00018005 andeq r8, r1, r5 30000094: 008c07a3 addeq r0, ip, r3, lsr #15
30000098: 000000b1 strheq r0, [r0], -r1 3000009c: 00000030 andeq r0, r0, r0, lsr r0 300000a0: 00000030 andeq r0, r0, r0, lsr r0 300000a4: 30000010 andcc r0, r0, r0, lsl r0 300000a8: e1a00000 nop ; (mov r0, r0) 300000ac: e1a00000 nop ; (mov r0, r0) 300000b0 <wait>: 300000b0: e52db004 push {fp} ; (str fp, [sp, #-4]!) 300000b4: e28db000 add fp, sp, #0 300000b8: e24dd00c sub sp, sp, #12 300000bc: e50b0008 str r0, [fp, #-8] 300000c0: ea000002 b 300000d0 <wait+0x20> 300000c4: e51b3008 ldr r3, [fp, #-8] 300000c8: e2433001 sub r3, r3, #1 300000cc: e50b3008 str r3, [fp, #-8] 300000d0: e51b3008 ldr r3, [fp, #-8] 300000d4: e3530000 cmp r3, #0 300000d8: 1afffff9 bne 300000c4 <wait+0x14> 300000dc: e28bd000 add sp, fp, #0 300000e0: e8bd0800 pop {fp} 300000e4: e12fff1e bx lr 300000e8 <main>: 300000e8: e92d4800 push {fp, lr} 300000ec: e28db004 add fp, sp, #4 300000f0: e24dd008 sub sp, sp, #8 300000f4: e3a03000 mov r3, #0 300000f8: e50b3008 str r3, [fp, #-8] 300000fc: e59f304c ldr r3, [pc, #76] ; 30000150 <main+0x68>
30000100: e3a02c15 mov r2, #5376 ; 0x1500
30000104: e5832000 str r2, [r3] 30000108: ea000000 b 30000110 <main+0x28> 3000010c: e1a00000 nop ; (mov r0, r0) 30000110: e59f003c ldr r0, [pc, #60] ; 30000154 <main+0x6c>
30000114: ebffffe5 bl 300000b0 <wait>
30000118: e59f3038 ldr r3, [pc, #56] ; 30000158 <main+0x70> 3000011c: e51b2008 ldr r2, [fp, #-8] 30000120: e1a02202 lsl r2, r2, #4
30000124: e1e02002 mvn r2, r2 30000128: e5832000 str r2, [r3] 3000012c: e51b3008 ldr r3, [fp, #-8] 30000130: e2833001 add r3, r3, #1
30000134: e50b3008 str r3, [fp, #-8] 30000138: e51b3008 ldr r3, [fp, #-8] 3000013c: e3530008 cmp r3, #8
30000140: 1afffff1 bne 3000010c <main+0x24>
30000144: e3a03000 mov r3, #0
30000148: e50b3008 str r3, [fp, #-8] 3000014c: eaffffef b 30000110 <main+0x28>
30000150: 56000050 undefined instruction 0x56000050
30000154: 00007530 andeq r7, r0, r0, lsr r5 30000158: 56000054 undefined instruction 0x56000054 Disassembly of section .ARM.attributes: 00000000 <.ARM.attributes>: 0: 00002541 andeq r2, r0, r1, asr #10
4: 61656100 cmnvs r5, r0, lsl #2
8: 01006962 tsteq r0, r2, ror #18 c: 0000001b andeq r0, r0, fp, lsl r0 10: 00543405 subseq r3, r4, r5, lsl #8
14: 01080206 tsteq r8, r6, lsl #4
18: 04120109 ldreq r0, [r2], #-265 ; 0x109 1c: 01150114 tsteq r5, r4, lsl r1 20: 01180317 tsteq r8, r7, lsl r3 24: Address 0x00000024 is out of bounds. Disassembly of section .comment: 00000000 <.comment>: 0: 3a434347 bcc 10d0d24 <SDRAM_BASE-0x2ef2f2dc>
4: 74632820 strbtvc r2, [r3], #-2080 ; 0x820
8: 312d676e teqcc sp, lr, ror #14 c: 312e362e teqcc lr, lr, lsr #12
10: 2e342029 cdpcs 0, 3, cr2, cr4, cr9, {1} 14: 00332e34 eorseq r2, r3, r4, lsr lr
反彙編文件中,最左邊的數字,表示的是應該位於哪一個地址。中間是對應指令的機器碼。右邊則是彙編指令。code
1 爲何反彙編文件中「應該運行」地址都是3打頭的呢?orm
由於這是與連接腳本也就是makefile中的 -Ttext有關係blog
2 整個程序運行的順序應該是這樣的: 首先CPU自動從外接的nandflash中的前4K數據複製到SRAM中(假設從nandflash啓動)。而後CPU跳轉到SRAM中0地址運行。這一段代碼完成的工做包括了關看門狗、時鐘、初始化SDRAM、拷貝代碼從SRAM到SDRAM(實際上不少時候是從NandFlash拷貝到SDRAM),最後跳轉到SDRAM中執行。ip
3 何時跳到SDRAM中執行,怎麼肯定跳轉的地址。博客
彙編代碼中是以下圖所示flash
而對應的反彙編代碼是
其中的「ldr pc, [pc, #144]」
這裏是將當前的PC值加144(十進制)。
而此時PC的值是多少呢,固然是0x00000014 + 8
(1) 爲何是0x00000014不是0x30000014呢,由於此時還在SRAM中運行而非SDRAM,雖然連接地址指定該條語句應該位於0x30000014可是真正運行的地址並非由此連接而肯定。
(2) 爲何 是加8
這裏能夠參考ARM指令系統的介紹,正常模式下是+8
因此這條語句是將0x14+8+144=0xA4,而0x000000A4的內容以下圖
能夠看到是30000010,換而言之,此時PC值 等於了0X3000010位於SDRAM中,那此地址上的內容是什麼呢,別忘了,咱們剛把些代碼複製到了SDRAM中。此時的代碼如上上圖所示。
就此,恢復正常工做,此時程序所謂的「應該運行地址」纔等於了「實際運行地址」
關於連接地址問題,可參見另一篇相關的博客。