Deepo

Deepo is a series of Docker images thatpython

and their Dockerfile generator thatgit


 

GPU Version

Installation

Step 1. Install Docker and nvidia-docker.

Step 2. Obtain the all-in-one image from Docker Hub

docker pull ufoym/deepo

For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:github

docker pull registry.docker-cn.com/ufoym/deepo

ordocker

docker pull hub-mirror.c.163.com/ufoym/deepo

orshell

docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo

Usage

Now you can try this command:apache

docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi 

This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit doubuntu

docker run --runtime=nvidia -it ufoym/deepo bash 

If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.bash

docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash 

This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.app

Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.ide

docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash 

CPU Version

Installation

Step 1. Install Docker.

Step 2. Obtain the all-in-one image from Docker Hub

docker pull ufoym/deepo:cpu

Usage

Now you can try this command:

docker run -it ufoym/deepo:cpu bash 

If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.

docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash 

This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.

Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.

docker run -it --ipc=host ufoym/deepo:cpu bash 

You are now ready to begin your journey.

$ python

>>> import tensorflow >>> import sonnet >>> import torch >>> import keras >>> import mxnet >>> import cntk >>> import chainer >>> import theano >>> import lasagne >>> import caffe >>> import caffe2 

$ caffe --version

caffe version 1.0.0

$ darknet

usage: darknet <function>

$ th

│  ______             __   |  Torch7
 │ /_  __/__  ________/ /   |  Scientific computing for Lua.
 │  / / / _ \/ __/ __/ _ \  |  Type ? for help
 │ /_/  \___/_/  \__/_//_/  |  https://github.com/torch
 │                          |  http://torch.ch
 │
 │th>

Customization

Note that docker pull ufoym/deepo mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.

Unhappy with all-in-one solution?

If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:

docker pull ufoym/deepo:tensorflow

Jupyter support

Step 1. pull the image with jupyter support

docker pull ufoym/deepo:all-jupyter

Step 2. run the image

docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root' 

Build your own customized image with Lego-like modules

Step 1. prepare generator

git clone https://github.com/ufoym/deepo.git
cd deepo/generator 

Step 2. generate your customized Dockerfile

For example, if you like pytorch and lasagne, then

python generate.py Dockerfile pytorch lasagne

This should generate a Dockerfile that contains everything for building pytorch and lasagne. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.

You can also specify the version of Python:

python generate.py Dockerfile pytorch lasagne python==3.6 

Step 3. build your Dockerfile

docker build -t my/deepo . 

This may take several minutes as it compiles a few libraries from scratch.

Comparison to alternatives

. modern-deep-learning dl-docker jupyter-deeplearning Deepo
ubuntu 16.04 14.04 14.04 18.04
cuda X 8.0 6.5-8.0 8.0-10.0/None
cudnn X v5 v2-5 v7
onnx X X X O
theano X O O O
tensorflow O O O O
sonnet X X X O
pytorch X X X O
keras O O O O
lasagne X O O O
mxnet X X X O
cntk X X X O
chainer X X X O
caffe O O O O
caffe2 X X X O
torch X O O O
darknet X X X O

Tags

Available Tags

. CUDA 10.0 / Python 3.6 CPU-only / Python 3.6
all-in-one latest all all-py36 py36-cu100 all-py36-cu100 all-py36-cpu all-cpu py36-cpu cpu
all-in-one with jupyter all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter all-py36-jupyter-cpu py36-jupyter-cpu
Theano theano-py36-cu100 theano-py36 theano theano-py36-cpu theano-cpu
TensorFlow tensorflow-py36-cu100 tensorflow-py36 tensorflow tensorflow-py36-cputensorflow-cpu
Sonnet sonnet-py36-cu100 sonnet-py36 sonnet sonnet-py36-cpu sonnet-cpu
PyTorch / Caffe2 pytorch-py36-cu100 pytorch-py36pytorch pytorch-py36-cpu pytorch-cpu
Keras keras-py36-cu100 keras-py36 keras keras-py36-cpu keras-cpu
Lasagne lasagne-py36-cu100 lasagne-py36lasagne lasagne-py36-cpu lasagne-cpu
MXNet mxnet-py36-cu100 mxnet-py36 mxnet mxnet-py36-cpu mxnet-cpu
CNTK cntk-py36-cu100 cntk-py36 cntk cntk-py36-cpu cntk-cpu
Chainer chainer-py36-cu100 chainer-py36chainer chainer-py36-cpu chainer-cpu
Caffe caffe-py36-cu100 caffe-py36 caffe caffe-py36-cpu caffe-cpu
Torch torch-cu100 torch torch-cpu
Darknet darknet-cu100 darknet darknet-cpu

Deprecated Tags

. CUDA 9.0 / Python 3.6 CUDA 9.0 / Python 2.7 CPU-only / Python 3.6 CPU-only / Python 2.7
all-in-one py36-cu90 all-py36-cu90 all-py27-cu90all-py27 py27-cu90   all-py27-cpupy27-cpu
all-in-one with jupyter all-jupyter-py36-cu90 all-py27-jupyter py27-jupyter   all-py27-jupyter-cpu py27-jupyter-cpu
Theano theano-py36-cu90 theano-py27-cu90 theano-py27   theano-py27-cpu
TensorFlow tensorflow-py36-cu90 tensorflow-py27-cu90tensorflow-py27   tensorflow-py27-cpu
Sonnet sonnet-py36-cu90 sonnet-py27-cu90 sonnet-py27   sonnet-py27-cpu
PyTorch pytorch-py36-cu90 pytorch-py27-cu90 pytorch-py27   pytorch-py27-cpu
Keras keras-py36-cu90 keras-py27-cu90keras-py27   keras-py27-cpu
Lasagne lasagne-py36-cu90 lasagne-py27-cu90 lasagne-py27   lasagne-py27-cpu
MXNet mxnet-py36-cu90 mxnet-py27-cu90mxnet-py27   mxnet-py27-cpu
CNTK cntk-py36-cu90 cntk-py27-cu90cntk-py27   cntk-py27-cpu
Chainer chainer-py36-cu90 chainer-py27-cu90 chainer-py27   chainer-py27-cpu
Caffe caffe-py36-cu90 caffe-py27-cu90caffe-py27   caffe-py27-cpu
Caffe2 caffe2-py36-cu90 caffe2-py36 caffe2 caffe2-py27-cu90 caffe2-py27 caffe2-py36-cpucaffe2-cpu caffe2-py27-cpu
Torch torch-cu90 torch-cu90 torch   torch-cpu
Darknet darknet-cu90 darknet-cu90darknet   darknet-cpu

Citation

@misc{ming2017deepo,
    author = {Ming Yang},
    title = {Deepo: set up deep learning environment in a single command line.},
    year = {2017},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/ufoym/deepo}}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

Licensing

Deepo is MIT licensed.

相關文章
相關標籤/搜索