Tweet with Disaster(Kaggle NLP項目實戰)

項目介紹(Real or Not? NLP with Disaster Tweets)

項目kaggle連接:https://www.kaggle.com/c/nlp-getting-started/overviewhtml

在緊急狀況下,Twitter已經成爲一個重要的溝通渠道。智能手機的普及令人們可以實時宣佈正在觀察的緊急狀況。正由於如此,愈來愈多的機構對程序化監控Twitter(即救災組織和新聞機構)感興趣。可是,人們並不老是清楚一我的的話是否真的在宣告一場災難。好比下面的例子:python

在這裏插入圖片描述

做者明確地使用了「燃燒」這個詞,但它的意思是隱喻性的。這一點對人類來講是顯而易見的,特別是在視覺輔助下。但對機器來講就不那麼清楚了。react

在這場競爭中,你面臨着創建一個機器學習模型的挑戰,該模型能夠預測哪些Tweets是關於真正的災難的,哪些Tweets不是。git

EDA

數據預處理部分

1 導入數據

train = pd.read_csv('../input/nlp-getting-started/train.csv')
test = pd.read_csv('../input/nlp-getting-started/test.csv')
sample_submission = pd.read_csv('../input/nlp-getting-started/sample_submission.csv')

# Print the shape of the training data
print('{} rows and {} cols in training dataset.'.format(train.shape[0], train.shape[1]))
print('{} rows and {} cols in training dataset.'.format(test.shape[0], test.shape[1]))

# Inspecting the training data
train.head(10)

輸出以下:

2 描述性分析

查看標籤0和1的分佈狀況github

# Frequency for taget variable
count_table = train.target.value_counts()
display(count_table)

# Plot class distribution
plt.figure(figsize=(6,5))
plt.bar('False',count_table[0],label='False',width=0.6)
plt.bar('True', count_table[1],label='True',width=0.6)
plt.legend()
plt.ylabel('Count of examples')
plt.xlabel('Category')
plt.title('Class Distribution')
plt.ylim([0,4700])
plt.show()

數據對比
每條推特長度的分佈
json

# Plot the frequency of tweets length
bins = 150
plt.figure(figsize=(18,5))
plt.hist(train[train['target']==0]['length'], label= 'False',bins=bins,alpha=0.8)
plt.hist(train[train['target']==1]['length'], label= 'True', bins=bins,alpha=0.8) 
plt.xlabel('Length of text (characters)')
plt.ylabel('Count')
plt.title('Frequency of tweets length')
plt.legend(loc='best')
plt.show()

在這裏插入圖片描述
兩種推特的長度分佈狀況對比
數組

# Frequency of tweets length in 2 classes
fg, (ax1, ax2)=plt.subplots(1,2,figsize=(14,5))
ax1.hist(train[train['target']==0]['length'],color='red')
ax1.set_title('Distribution of fake tweets')
ax1.set_xlabel('Tweets length (characters)')
ax1.set_ylabel('Count')
ax2.hist(train[train['target']==1]['length'],color='blue')
ax2.set_title('Distribution of true tweets')
ax2.set_xlabel('Tweets length (characters)')
ax2.set_ylabel('Count')
fg.suptitle('Characater in classes')
plt.show()

在這裏插入圖片描述
兩種推特出現的詞的數量分佈
網絡

# Plot the distribution of count of words
words_true = train[train['target']==1]['text'].str.split().apply(len)
words_false = train[train['target']==0]['text'].str.split().apply(len)
plt.figure(figsize=(10,5))
plt.hist(words_false, label='False',alpha=0.8,bins=15)
plt.hist(words_true, label='True',alpha=0.6,bins=15)
plt.legend(loc='best')
plt.title('Count of words in tweets')
plt.xlabel('Count of words')
plt.ylabel('Count')
plt.show()

在這裏插入圖片描述

3 數據清洗

定義去除全部停用詞,語氣符號,html符號,表情符號的函數app

# Define a function to remove URL
def remove_url(text):
    url = re.compile(r'https?://\S+|www\.\S+')
    return url.sub(r'',text)

# Test function
test = 'Address of this kernel: https://www.kaggle.com/lilstarboy/kernel4d04fe5667/edit'
print(remove_url(test))

# Define a function to remove html tag
def remove_html(text):
    html = re.compile(r'<.*?>')
    return html.sub(r'',text)

# Test function
test = """<div> <h1>Real or Fake</h1> <p>Kaggle </p> <a href="https://www.kaggle.com/c/nlp-getting-started">getting started</a> </div>"""
print(remove_html(test))

# Define a function to remove emojis
def remove_emoji(text):
    emoji_pattern = re.compile("["
                           u"\U0001F600-\U0001F64F"  # emoticons
                           u"\U0001F300-\U0001F5FF"  # symbols & pictographs
                           u"\U0001F680-\U0001F6FF"  # transport & map symbols
                           u"\U0001F1E0-\U0001F1FF"  # flags (iOS)
                           u"\U00002702-\U000027B0"
                           u"\U000024C2-\U0001F251"
                           "]+", flags=re.UNICODE)
    return emoji_pattern.sub(r'', text)

remove_emoji("To test 🚀")

# Define a function to remove punctuations
def remove_punct(text):
    table=str.maketrans('','',string.punctuation)
    return text.translate(table)

# Define a function to convert abbreviations to text
abbreviations = {
    "$" : " dollar ",
    "€" : " euro ",
    "4ao" : "for adults only",
    "a.m" : "before midday",
    "a3" : "anytime anywhere anyplace",
    "aamof" : "as a matter of fact",
    "acct" : "account",
    "adih" : "another day in hell",
    "afaic" : "as far as i am concerned",
    "afaict" : "as far as i can tell",
    "afaik" : "as far as i know",
    "afair" : "as far as i remember",
    "afk" : "away from keyboard",
    "app" : "application",
    "approx" : "approximately",
    "apps" : "applications",
    "asap" : "as soon as possible",
    "asl" : "age, sex, location",
    "atk" : "at the keyboard",
    "ave." : "avenue",
    "aymm" : "are you my mother",
    "ayor" : "at your own risk", 
    "b&b" : "bed and breakfast",
    "b+b" : "bed and breakfast",
    "b.c" : "before christ",
    "b2b" : "business to business",
    "b2c" : "business to customer",
    "b4" : "before",
    "b4n" : "bye for now",
    "b@u" : "back at you",
    "bae" : "before anyone else",
    "bak" : "back at keyboard",
    "bbbg" : "bye bye be good",
    "bbc" : "british broadcasting corporation",
    "bbias" : "be back in a second",
    "bbl" : "be back later",
    "bbs" : "be back soon",
    "be4" : "before",
    "bfn" : "bye for now",
    "blvd" : "boulevard",
    "bout" : "about",
    "brb" : "be right back",
    "bros" : "brothers",
    "brt" : "be right there",
    "bsaaw" : "big smile and a wink",
    "btw" : "by the way",
    "bwl" : "bursting with laughter",
    "c/o" : "care of",
    "cet" : "central european time",
    "cf" : "compare",
    "cia" : "central intelligence agency",
    "csl" : "can not stop laughing",
    "cu" : "see you",
    "cul8r" : "see you later",
    "cv" : "curriculum vitae",
    "cwot" : "complete waste of time",
    "cya" : "see you",
    "cyt" : "see you tomorrow",
    "dae" : "does anyone else",
    "dbmib" : "do not bother me i am busy",
    "diy" : "do it yourself",
    "dm" : "direct message",
    "dwh" : "during work hours",
    "e123" : "easy as one two three",
    "eet" : "eastern european time",
    "eg" : "example",
    "embm" : "early morning business meeting",
    "encl" : "enclosed",
    "encl." : "enclosed",
    "etc" : "and so on",
    "faq" : "frequently asked questions",
    "fawc" : "for anyone who cares",
    "fb" : "facebook",
    "fc" : "fingers crossed",
    "fig" : "figure",
    "fimh" : "forever in my heart", 
    "ft." : "feet",
    "ft" : "featuring",
    "ftl" : "for the loss",
    "ftw" : "for the win",
    "fwiw" : "for what it is worth",
    "fyi" : "for your information",
    "g9" : "genius",
    "gahoy" : "get a hold of yourself",
    "gal" : "get a life",
    "gcse" : "general certificate of secondary education",
    "gfn" : "gone for now",
    "gg" : "good game",
    "gl" : "good luck",
    "glhf" : "good luck have fun",
    "gmt" : "greenwich mean time",
    "gmta" : "great minds think alike",
    "gn" : "good night",
    "g.o.a.t" : "greatest of all time",
    "goat" : "greatest of all time",
    "goi" : "get over it",
    "gps" : "global positioning system",
    "gr8" : "great",
    "gratz" : "congratulations",
    "gyal" : "girl",
    "h&c" : "hot and cold",
    "hp" : "horsepower",
    "hr" : "hour",
    "hrh" : "his royal highness",
    "ht" : "height",
    "ibrb" : "i will be right back",
    "ic" : "i see",
    "icq" : "i seek you",
    "icymi" : "in case you missed it",
    "idc" : "i do not care",
    "idgadf" : "i do not give a damn fuck",
    "idgaf" : "i do not give a fuck",
    "idk" : "i do not know",
    "ie" : "that is",
    "i.e" : "that is",
    "ifyp" : "i feel your pain",
    "IG" : "instagram",
    "iirc" : "if i remember correctly",
    "ilu" : "i love you",
    "ily" : "i love you",
    "imho" : "in my humble opinion",
    "imo" : "in my opinion",
    "imu" : "i miss you",
    "iow" : "in other words",
    "irl" : "in real life",
    "j4f" : "just for fun",
    "jic" : "just in case",
    "jk" : "just kidding",
    "jsyk" : "just so you know",
    "l8r" : "later",
    "lb" : "pound",
    "lbs" : "pounds",
    "ldr" : "long distance relationship",
    "lmao" : "laugh my ass off",
    "lmfao" : "laugh my fucking ass off",
    "lol" : "laughing out loud",
    "ltd" : "limited",
    "ltns" : "long time no see",
    "m8" : "mate",
    "mf" : "motherfucker",
    "mfs" : "motherfuckers",
    "mfw" : "my face when",
    "mofo" : "motherfucker",
    "mph" : "miles per hour",
    "mr" : "mister",
    "mrw" : "my reaction when",
    "ms" : "miss",
    "mte" : "my thoughts exactly",
    "nagi" : "not a good idea",
    "nbc" : "national broadcasting company",
    "nbd" : "not big deal",
    "nfs" : "not for sale",
    "ngl" : "not going to lie",
    "nhs" : "national health service",
    "nrn" : "no reply necessary",
    "nsfl" : "not safe for life",
    "nsfw" : "not safe for work",
    "nth" : "nice to have",
    "nvr" : "never",
    "nyc" : "new york city",
    "oc" : "original content",
    "og" : "original",
    "ohp" : "overhead projector",
    "oic" : "oh i see",
    "omdb" : "over my dead body",
    "omg" : "oh my god",
    "omw" : "on my way",
    "p.a" : "per annum",
    "p.m" : "after midday",
    "pm" : "prime minister",
    "poc" : "people of color",
    "pov" : "point of view",
    "pp" : "pages",
    "ppl" : "people",
    "prw" : "parents are watching",
    "ps" : "postscript",
    "pt" : "point",
    "ptb" : "please text back",
    "pto" : "please turn over",
    "qpsa" : "what happens", #"que pasa",
    "ratchet" : "rude",
    "rbtl" : "read between the lines",
    "rlrt" : "real life retweet", 
    "rofl" : "rolling on the floor laughing",
    "roflol" : "rolling on the floor laughing out loud",
    "rotflmao" : "rolling on the floor laughing my ass off",
    "rt" : "retweet",
    "ruok" : "are you ok",
    "sfw" : "safe for work",
    "sk8" : "skate",
    "smh" : "shake my head",
    "sq" : "square",
    "srsly" : "seriously", 
    "ssdd" : "same stuff different day",
    "tbh" : "to be honest",
    "tbs" : "tablespooful",
    "tbsp" : "tablespooful",
    "tfw" : "that feeling when",
    "thks" : "thank you",
    "tho" : "though",
    "thx" : "thank you",
    "tia" : "thanks in advance",
    "til" : "today i learned",
    "tl;dr" : "too long i did not read",
    "tldr" : "too long i did not read",
    "tmb" : "tweet me back",
    "tntl" : "trying not to laugh",
    "ttyl" : "talk to you later",
    "u" : "you",
    "u2" : "you too",
    "u4e" : "yours for ever",
    "utc" : "coordinated universal time",
    "w/" : "with",
    "w/o" : "without",
    "w8" : "wait",
    "wassup" : "what is up",
    "wb" : "welcome back",
    "wtf" : "what the fuck",
    "wtg" : "way to go",
    "wtpa" : "where the party at",
    "wuf" : "where are you from",
    "wuzup" : "what is up",
    "wywh" : "wish you were here",
    "yd" : "yard",
    "ygtr" : "you got that right",
    "ynk" : "you never know",
    "zzz" : "sleeping bored and tired"
}

def convert_abbrev(word):
    return abbreviations[word.lower()] if word.lower() in abbreviations.keys() else word

def convert_abbrev_in_text(text):
    tokens = word_tokenize(text)
    tokens = [convert_abbrev(word) for word in tokens]
    text = ' '.join(tokens)
    return text

# Test function
test = 'This is very complex!!!!!??'
print(remove_punct(test))

4 用詞雲進行可視化展現

# Wordcloud for not disaster tweets
corpus_all_0 = create_corpus(df, 0)

# Plot the wordcloud
plt.figure(figsize=(15,8))
word_cloud = WordCloud(
                          background_color='white',
                          max_font_size = 80
                         ).generate(" ".join(corpus_all_0))
plt.imshow(word_cloud)
plt.axis('off')
plt.show()

# Wordcloud for disaster tweets
corpus_all_1 = create_corpus(df, 1)

# Plot the wordcloud
plt.figure(figsize=(15,8))
word_cloud = WordCloud(
                          background_color='white',
                          max_font_size = 80
                         ).generate(" ".join(corpus_all_1))
plt.imshow(word_cloud)
plt.axis('off')
plt.show()

沒有說起真實的災難的推特的詞雲:
在這裏插入圖片描述
說起真實災難的推特的詞雲
在這裏插入圖片描述


dom

導入Bert預訓練模型

介紹下Bert預訓練模型:
用Bert進行遷移學習和fine-tuning的原理你們能夠參考這篇論文https://arxiv.org/abs/1810.04805
這裏用的是Bert-based Uncased模型,是一個12層神經網絡,768個hidden layer,110M個參數的小模型(在Bert模型裏面確實算小了狗頭)

# Define hyperparameters
MAXLEN = 128
BATCH_SIZE = 32
NUM_EPOCHS = 5
LEARNING_RATE = 3e-6

# Import bert tokenizer, config and model
tokenizer = BertTokenizer.from_pretrained("https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt")
config = BertConfig.from_pretrained("https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json")
bert_model = TFBertModel.from_pretrained("https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5",config=config)

接下來咱們使用Bert自帶的分詞器生成詞向量看看效果

# Convert the first sentence in 'text' column into word vector
text = train['text'][0]
print(text)
input_ids = tokenizer.encode(text,max_length=MAXLEN)
print(input_ids)
print(tokenizer.convert_ids_to_tokens(input_ids))

在這裏插入圖片描述

構造Bert模型輸入

接下來咱們就要構造Bert模型的輸入層
這裏的Bert預訓練模型有三個輸入:

  1. 一個二維數組(batch_size,input_length)
  2. 每一個單詞的index
  3. 相應的attention_mask和對應的token_type_id

輸出層有兩個輸出

  1. 每一個時刻的hidden state(batch_size,input_length,hidden_size),是一個三維數組
  2. 每一個句子的向量表示(batch_size,input_length),由上一個hidden_state獲得

具體設置和預設參數請參考Bert的官方GitHub:https://github.com/google-research/bert

這裏咱們進行了一個Bert模型輸入的簡單構造,每一句句子的詞向量不夠的長度用0補充,因爲都是單個句子,因此token type都是0

# Build input values on the training data
train_input_ids = []
train_attension_mask = []
train_token_type_ids = []
for text in train['text']:
    input_ids = tokenizer.encode(text,max_length=MAXLEN)
    padding_length = MAXLEN-len(input_ids)
    train_input_ids.append(input_ids+[0]*padding_length)
    train_attension_mask.append([1]*len(input_ids)+[0]*padding_length)
    train_token_type_ids.append([0]*MAXLEN)
train_input_ids = np.array(train_input_ids)
train_attension_mask = np.array(train_attension_mask)
train_token_type_ids = np.array(train_token_type_ids)

# Build input values on the testing data
test_input_ids = []
test_attension_mask = []
test_token_type_ids = []
for text in test['text']:
    input_ids = tokenizer.encode(text,max_length=MAXLEN)
    padding_length = MAXLEN-len(input_ids)
    test_input_ids.append(input_ids+[0]*padding_length)
    test_attension_mask.append([1]*len(input_ids)+[0]*padding_length)
    test_token_type_ids.append([0]*MAXLEN)
test_input_ids = np.array(test_input_ids)
test_attension_mask = np.array(test_attension_mask)
test_token_type_ids = np.array(test_token_type_ids)

y_train = np.array(train['target'])

創建模型並訓練

接下來咱們就構造Bert模型,因爲二分類任務激活函數是sigmoid,Adam優化器其餘沒啥好說的

# Build the Bert-base-Uncased model
input_ids = keras.layers.Input(shape=(MAXLEN,),dtype='int32')
attension_mask = keras.layers.Input(shape=(MAXLEN,),dtype='int32')
token_type_ids = keras.layers.Input(shape=(MAXLEN,),dtype='int32')
_, x = bert_model([input_ids,attension_mask,token_type_ids])
outputs = keras.layers.Dense(1,activation='sigmoid')(x)
model = keras.models.Model(inputs=[input_ids,attension_mask,token_type_ids],outputs=outputs)
model.compile(loss='binary_crossentropy',optimizer=keras.optimizers.Adam(lr=LEARNING_RATE),metrics=['accuracy'])

接下來訓練

# Fit the Bert-base-Uncased model
(train_input_ids,valid_input_ids,
 train_attension_mask,valid_attension_mask,
 train_token_type_ids,valid_token_type_ids,y_train,y_valid) = train_test_split(train_input_ids,train_attension_mask,
                                                               train_token_type_ids,y_train,test_size=0.1,
                                                               stratify=y_train, random_state=0)
early_stopping = keras.callbacks.EarlyStopping(patience=3,restore_best_weights=True)
model.fit([train_input_ids,train_attension_mask,train_token_type_ids],y_train,
         validation_data=([valid_input_ids,valid_attension_mask,valid_token_type_ids],y_valid),
         batch_size = BATCH_SIZE,epochs=NUM_EPOCHS,callbacks=[early_stopping])

在這裏插入圖片描述
看看summary

model.summary()

在這裏插入圖片描述
在這裏插入圖片描述

提交結果

# Use the model to do prediction
y_pred = model.predict([test_input_ids,test_attension_mask,test_token_type_ids],batch_size=BATCH_SIZE,verbose=1).ravel()
y_pred = (y_pred>=0.5).astype(int)
# Export to submission
submission = pd.read_csv("../input/nlp-getting-started/sample_submission.csv")
submission['target'] = y_pred
submission.to_csv('nlp_prediction.csv',index=False)

調參過程這裏就不詳細說了,通過幾回提交,獲得最好的成績是accuracy:0.83742
在這裏插入圖片描述 具體流程能夠參閱咱們的kaggle網頁https://www.kaggle.com/lilstarboy/pig-budt758b-project-notebook?scriptVersionId=33280711

相關文章
相關標籤/搜索