JavaShuo
欄目
標籤
Label-dependent Feature Extraction in Social Networks for Node Classification
時間 2020-12-23
原文
原文鏈接
提出了一種基於社會網絡特徵提取的網絡內分類方法。該方法提供了結合網絡結構信息和分配給節點的類標籤來計算的新特性。研究了不同特徵對分類性能的影響。在真實數據上的實驗表明,該方法生成的特徵可以顯著提高分類精度。 Introduction 有一些應用和研究方法,特別是與社交網絡相關的應用和研究方法,能夠產生相互連接的對象標籤之間依賴的數據,稱爲關係自相關。根據這些連接,應該向分類過程中添加額外的輸入
>>阅读原文<<
相關文章
1.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
2.
ArnetMiner: Extraction and Mining of Academic Social Networks
3.
Learn How to Perform Feature Extraction from Graphs using DeepWalk
4.
Graph Neural Networks for Social Recommendation
5.
Graph based feature extraction and hybrid classification approach for facial expression recognition
6.
Recurrent Convolutional Neural Networks for Text Classification
7.
【Paper】TextCNN:Convolutional Neural Networks for Sentence Classification
8.
Very Deep Convolutional Networks for Text Classification
9.
《Character-level Convolutional Networks for Text Classification》
10.
Feature Selection for Classification: A Review(二)
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
XML DOM - Node 對象
-
XML DOM 教程
•
Kotlin學習(一)基本語法
•
JDK13 GA發佈:5大特性解讀
相關標籤/搜索
for...in
for..in
for.....in
networks
extraction
social
classification
feature
feature...setfeature
New Feature
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
微軟準備淘汰 SHA-1
2.
Windows Server 2019 Update 2010,20H2
3.
Jmeter+Selenium結合使用(完整篇)
4.
windows服務基礎
5.
mysql 查看線程及kill線程
6.
DevExpresss LookUpEdit詳解
7.
GitLab簡單配置SSHKey與計算機建立連接
8.
桶排序(BucketSort)
9.
桶排序(BucketSort)
10.
C++ 桶排序(BucketSort)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
2.
ArnetMiner: Extraction and Mining of Academic Social Networks
3.
Learn How to Perform Feature Extraction from Graphs using DeepWalk
4.
Graph Neural Networks for Social Recommendation
5.
Graph based feature extraction and hybrid classification approach for facial expression recognition
6.
Recurrent Convolutional Neural Networks for Text Classification
7.
【Paper】TextCNN:Convolutional Neural Networks for Sentence Classification
8.
Very Deep Convolutional Networks for Text Classification
9.
《Character-level Convolutional Networks for Text Classification》
10.
Feature Selection for Classification: A Review(二)
>>更多相關文章<<