機器學習中的數學(5)-強大的矩陣奇異值分解(SVD)及其應用

前言:     上一次寫了關於PCA與LDA的文章,PCA的實現一般有兩種,一種是用特徵值分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是基於特徵值分解的一種解釋。特徵值和奇異值在大部分人的印象中,往往是停留在純粹的數學計算中。而且線性代數或者矩陣論裏面,也很少講任何跟特徵值與奇異值有關的應用背景。奇異值分解是一個有着很明顯的物理意義的一種方法,它可以將一個比較複雜的矩陣用更小更簡單的幾
相關文章
相關標籤/搜索