已知三點,求三角形面積

已經知道三角形三點A(X1,Y1) B(X2,Y2) C(X3,Y3)
\[ \vec{AB} = (X2-X1,Y2-Y1) \]spa

\[ \vec{AC} = (X3-X1,Y3-Y1) \]class

\[ ||n|| = \vec{AB} \times \vec{AC} = |\vec{AB}|\cdot|\vec{AB}|*Sin<\vec{AB},\vec{AC}> \]im

\[ 由於 |\vec{AB}|*Sin<\vec{AB},\vec{AC}> 爲三角形的高 \]di

\[ 因此 S_{三角形}= \frac{1}{2} | \vec{AB} \times \vec{AC}| \]display

\[= \begin{vmatrix} X2-X1 & Y2-Y1\\ X3-X1 & Y3-Y1 \end{vmatrix} \]time

\[ = (X2-X1)(Y3-Y1) * (X3-X1)(Y2-Y1) \]math

\[ = X1Y2 + X2Y3 + X3Y1 - X1Y3 - X2Y1 - X3Y2 \]play

相關文章
相關標籤/搜索