【原創,轉載請標明做者:森狗】html
集美大學驗證碼分2種,一種是學生登入用的驗證碼,一種是管理員後臺的驗證碼。以下圖:spa
(學生登入驗證碼)code
http://www.cnblogs.com/sendog/p/5568618.htmlhtm
(管理員登入驗證碼)blog
對於第一種驗證碼,由於我在答辯時候提到如何解析驗證碼而後窮舉教務處破解後,今天已經被換成新的款式驗證碼了,第二種暫時還沒換,估計不久後也會換了。(怪我)
圖片
本文將用2中不一樣的方法識別2種驗證碼。get
1、先講第一種it
1.去除淡色噪點io
public static void sysout(BufferedImage img) throws IOException{ int height = img.getHeight(); int width = img.getWidth(); for (int x = 0; x < width; ++x) { for (int y = 0; y < height; ++y) { int color = getC(img.getRGB(x, y)); if(color>300){ img.setRGB(x, y, Color.WHITE.getRGB()); } //System.out.println(x+":"+y+":"+color); } } ImageIO.write(img, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/ss1.gif")); }
主要是這個color>300 300這個閥值的控制。經過打印一個個位點對比顏色,就能夠發現淡色的color值是大於300的驗證碼
public static int getC(int colorInt){ Color color = new Color(colorInt); return (color.getRed() + color.getGreen() + color.getBlue()); }
通過這一步處理後的驗證碼以下圖:
就只剩下深顏色的噪點了。
2.深顏色的噪點咱們能夠經過它的上下左右噪點是白色的來去除。直接上代碼:
public static void surround(BufferedImage img)throws IOException{ int height = img.getHeight(); int width = img.getWidth(); for (int x = 1; x < width-1; ++x) { for (int y = 1; y < height-1; ++y) { int s = img.getRGB(x, y-1); int r = img.getRGB(x, y+1); int z = img.getRGB(x-1, y+1); int l = img.getRGB(x+1, y+1); int white = Color.WHITE.getRGB(); if(s==white && r==white && z==white && l==white){ img.setRGB(x, y, Color.WHITE.getRGB()); } } } ImageIO.write(img, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/ss2.gif")); }
這步處理後的驗證碼以下:
3.以後咱們再簡單處理一下,就是切割掉外圍圖片的內邊距,只剩下主體驗證碼。
public static void splitPhoto(BufferedImage img) throws IOException{ BufferedImage newImg = img.getSubimage(7, 4, 33, 12); ImageIO.write(newImg, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/ss3.gif")); }
處理結果:
4.二值化處理
public static void black(BufferedImage img) throws IOException{ int height = img.getHeight(); int width = img.getWidth(); int white = Color.WHITE.getRGB(); for (int x = 0; x < width; ++x) { for (int y = 0; y < height; ++y) { if(img.getRGB(x, y)!=white){ img.setRGB(x, y, Color.black.getRGB()); } } } ImageIO.write(img, "gif", new File("C:/Users/Mr.wu/Desktop//驗證碼2/ss4.gif")); }
這邊二值化只要把除了白色的之外的顏色所有設置爲黑色就好了,結果以下
=================================
處理到這步後須要對驗證碼進行切割,收集0~9的字符,以後能夠讓驗證碼一個個字符與收集的0~9字符對比,類似度最高的就是對應的數值
5.收集驗證碼字符
//分割圖片 public static void splitImage(String picFile) throws Exception { BufferedImage img = ImageIO.read(new File(picFile)); BufferedImage img1 = img.getSubimage(0, 0, 7, 12); BufferedImage img2 = img.getSubimage(8, 0, 7, 12); BufferedImage img3 = img.getSubimage(18, 0, 7, 12); BufferedImage img4 = img.getSubimage(26, 0, 7, 12); ImageIO.write(img1, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/img/1.gif")); ImageIO.write(img2, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/img/2.gif")); ImageIO.write(img3, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/img/3.gif")); ImageIO.write(img4, "gif", new File("C:/Users/Mr.wu/Desktop/驗證碼2/img/4.gif")); }
6.拿第4步的驗證碼來和第5步收集的驗證碼對比
public static void main(String[] args) throws Exception { String picFile = "C:/Users/Mr.wu/Desktop/驗證碼2/ss4.gif"; Map<BufferedImage, String> map = loadTrainData(); List<BufferedImage> listImg = splitImage(picFile); String result = ""; for (BufferedImage bi : listImg) { result += getSingleCharOcr(bi, map); } System.out.println(result); } public static List<BufferedImage> splitImage(String picFile) throws Exception { BufferedImage img = ImageIO.read(new File(picFile)); List<BufferedImage> subImgs = new ArrayList<BufferedImage>(); subImgs.add(img.getSubimage(0, 0, 7, 12)); subImgs.add(img.getSubimage(8, 0, 7, 12)); subImgs.add(img.getSubimage(18, 0, 7, 12)); subImgs.add(img.getSubimage(26, 0, 7, 12)); return subImgs; } public static Map<BufferedImage, String> loadTrainData() throws Exception { Map<BufferedImage, String> map = new HashMap<BufferedImage, String>(); File dir = new File("C:/Users/Mr.wu/Desktop/驗證碼2/img/1"); File[] files = dir.listFiles(); for (File file : files) { map.put(ImageIO.read(file), file.getName().charAt(0) + ""); } return map; } public static String getSingleCharOcr(BufferedImage img, Map<BufferedImage, String> map) { String result = ""; int width = img.getWidth(); int height = img.getHeight(); int min = width * height; for (BufferedImage bi : map.keySet()) { int count = 0; Label1: for (int x = 0; x < width; ++x) { for (int y = 0; y < height; ++y) { if (isWhite(img.getRGB(x, y)) != isWhite(bi.getRGB(x, y))) { count++;//不一樣的 if (count >= min) break Label1; } } } if (count < min) { min = count; result = map.get(bi); } } System.out.println(result); return result; } public static int isWhite(int colorInt) { Color color = new Color(colorInt); if (color.getRed() + color.getGreen() + color.getBlue() > 100) {//黑色爲0 白色765 return 1; } return 0; }
輸出結果: