SQLAlchemyhtml
SQLAlchemy是Python編程語言下的一款ORM框架,該框架創建在數據庫API之上,使用關係對象映射進行數據庫操做,簡言之即是:將對象轉換成SQL,而後使用數據API執行SQL並獲取執行結果。python
對象映射關係(ORM)mysql
orm英文全稱object relational mapping,就是對象映射關係程序,簡單來講咱們相似python這種面向對象的程序來講一切皆對象,可是咱們使用的數據庫卻都是關係型的,爲了保證一致的使用習慣,經過orm將編程語言的對象模型和數據庫的關係模型創建映射關係,這樣咱們在使用編程語言對數據庫進行操做的時候能夠直接使用編程語言的對象模型進行操做就能夠了,而不用直接使用sql語言linux
優勢:sql
缺點:數據庫
sqlalchemy安裝編程
Dialect用於和數據API進行交流,根據配置文件的不一樣調用不一樣的數據庫API,從而實現對數據庫的操做,如:session
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多詳見:http://docs.sqlalchemy.org/en/latest/dialects/index.html
注:支持鏈接MySQL、Oracles數據庫數據結構
安裝:oracle
pip install SQLAlchemy pip install pymysql #因爲mysqldb依然不支持py3,因此這裏咱們用pymysql與sqlalchemy交互
基本使用
建立表結構
#!/usr/bin/env python # -*- coding: UTF-8 -*- import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker engine = create_engine("mysql+pymysql://root@192.168.91.92/sxl", encoding="utf-8", echo=True) # echo=True 打印程序運行詳細信息 Base = declarative_base() # 生成orm基類 class User(Base): __tablename__ = "user" # 表名 id = Column(Integer, primary_key=True) name = Column(String(32)) password = Column(String(64)) class color(Base): __tablename__ = "color" # 表名 id = Column(Integer, primary_key=True) name = Column(String(32)) password = Column(String(64)) Base.metadata.create_all(engine)
建立數據
最基本的表咱們建立好了,那咱們開始用orm建立一條數據試試
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import String,Integer,Column from sqlalchemy.orm import sessionmaker engine = create_engine("mysql+pymysql://root@192.168.91.92/sxl", encoding="utf-8") Base = declarative_base() #生成orm基類 class User(Base): __tablename__ = "user" #表名 id = Column(Integer,primary_key=True) name = Column(String(32)) password = Column(String(64)) #Base.metadata.create_all(engine) #建立表結構 Session_class = sessionmaker(bind=engine) #Session_class如今不是實例,而是類 Session = Session_class() #生成Session實例 user_obj = User(name="sxl",password="123") #生成你要建立的數據對象 print(user_obj.name,user_obj.id) #此時還沒建立對象呢,不信你打印一下id發現仍是None Session.add(user_obj) #把要建立的數據對象添加到這個session裏, 一會統一建立 print(user_obj.name,user_obj.id) #此時也依然還沒建立 Session.commit() #現此才統一提交,建立數據
增刪改查
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import String,Integer,Column from sqlalchemy.orm import sessionmaker engine = create_engine("mysql+pymysql://root@192.168.91.92/sxl", encoding="utf-8") Base = declarative_base() #生成orm基類 class User(Base): __tablename__ = "user" #表名 id = Column(Integer,primary_key=True) name = Column(String(32)) password = Column(String(64)) #Base.metadata.create_all(engine) #建立表結構 Session_class = sessionmaker(bind=engine) #Session_class如今不是實例,而是類 Session = Session_class() #生成Session實例
#添加數據 user_obj = User(name="sxl",password="123") #生成你要建立的數據對象 Session.add(user_obj) #把要建立的數據對象添加到這個session裏, 一會統一建立 Session.commit() #現此才統一提交,建立數據
#查詢數據
myuser=Session.query(user).filter(user.password=='123').first()
print(myuser) #myuser如今是一個對象
print(myuser.id,myuser.name,myuser.password)
#修改數據
myuser.name='abc'
Session.commit()
#刪除數據
Session.delete(myuser)
Session.commit()
回滾
Session.rollback()
獲取全部數據
print(Session.query(myuser.name,myuser.password).all()
多條件查詢
Session.query(user).filter(user.id>0).filter(user.id<7).all()
統計和分組
Session.query(user).filter(user.name.like("Ra%")).count()
分組
from sqlalchemy import func print(Session.query(func.count(user.name),user.name).group_by(user.name).all() )
外鍵關聯
咱們先建立個study_record表與student進行關聯
from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import String,Column,Integer,ForeignKey,DATE from sqlalchemy.orm import sessionmaker,relationship engine = create_engine("mysql+pymysql://root:zyw@123@192.168.0.59/lzl", encoding="utf-8") Base = declarative_base() class Student(Base): __tablename__ ="student" id = Column(Integer,primary_key=True) name = Column(String(32),nullable=False) register_date = Column(DATE,nullable=False) def __repr__(self): return "<%s name:%s>"%(self.id,self.name) class StudyRecord(Base): __tablename__ = "study_record" id = Column(Integer,primary_key=True) day = Column(Integer,nullable=False) status = Column(String(32),nullable=False) stu_id = Column(Integer,ForeignKey("student.id")) #關聯student表裏的id my_student = relationship("Student",backref="my_study_record") # Student爲關聯的類 def __repr__(self): return "<%s name:%s>" % (self.id, self.name) Base.metadata.create_all(engine) Session_class = sessionmaker(bind=engine) session = Session_class() s1 = Student(name="lzl",register_date="2016-10-26") s2 = Student(name="alex",register_date="2015-10-26") s3 = Student(name="eric",register_date="2014-10-26") s4 = Student(name="rain",register_date="2013-10-26") r1 = StudyRecord(day=1,status="YES",stu_id=1) r2 = StudyRecord(day=2,status="No",stu_id=1) r3 = StudyRecord(day=3,status="YES",stu_id=1) r4 = StudyRecord(day=1,status="YES",stu_id=2) session.add_all([s1,s2,s3,s4,r1,r2,r3,r4]) session.commit()
注:my_student = relationship("Student",backref="my_study_record")這個nb,容許你在user表裏經過backref字段反向查出全部它在addresses表裏的關聯項
Session_class = sessionmaker(bind=engine) session = Session_class() stu_obj = session.query(Student).filter(Student.name=="lzl").first() print(stu_obj) #<id:1 name:lzl> print(stu_obj.my_study_record)
多外鍵關聯
下表中,Customer表有2個字段都關聯了Address表,首先先建立表結構
from sqlalchemy import create_engine from sqlalchemy import Integer,String,Column,ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker,relationship engine = create_engine("mysql+pymysql://root:zyw@123@192.168.20.219/lzl", encoding="utf-8",echo= True) Base = declarative_base() class Customer(Base): __tablename__ = "customer" id = Column(Integer,primary_key=True) name = Column(String(32)) billing_address_id = Column(Integer,ForeignKey("address.id")) shipping_address_id = Column(Integer, ForeignKey("address.id")) billing_address = relationship("Address",foreign_keys=[billing_address_id]) #必須寫foreign_keys shipping_address = relationship("Address",foreign_keys=[shipping_address_id]) class Address(Base): __tablename__ = 'address' id = Column(Integer, primary_key=True) street = Column(String(32)) city = Column(String(32)) state = Column(String(32)) Base.metadata.create_all(engine)
生成數據:
Session = sessionmaker(bind=engine) session = Session() a1 = Address(street="Tiantongyuan",city="ChangPing",state="BJ") a2 = Address(street="Wudaokou",city="HaiDian",state="BJ") a3 = Address(street="Yanjiao",city="LangFang",state="HB") session.add_all([a1,a2,a3]) c1 = Customer(name="lzl",billing_address_id=1,shipping_address_id=2) c2 = Customer(name="Alex",billing_address_id=3,shipping_address_id=3) session.add_all([c1,c2]) session.commit()
查詢數據:
Session = sessionmaker(bind=engine) session = Session() cus_obj = session.query(Customer).filter_by(name="lzl").first() print(cus_obj)
多對多關聯
如今來設計一個能描述「圖書」與「做者」的關係的表結構,需求是
建立表結構:
#一本書能夠有多個做者,一個做者又能夠出版多本書 from sqlalchemy import Table, Column, Integer,String,DATE, ForeignKey from sqlalchemy.orm import relationship from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine("mysql+pymysql://root:zyw@123@192.168.20.219/lzl", encoding="utf-8") Base = declarative_base() #建立book_m2m_author表,表不用用戶操做,系統自動維護,自動添加數據 book_m2m_author = Table('book_m2m_author', Base.metadata, Column('book_id',Integer,ForeignKey('books.id')), Column('author_id',Integer,ForeignKey('authors.id')), ) class Book(Base): __tablename__ = 'books' id = Column(Integer,primary_key=True) name = Column(String(64)) pub_date = Column(DATE) #關聯Author類,secondary表示經過book_m2m_author表進行查詢關聯數據,backref反向查詢也同樣 authors = relationship('Author',secondary=book_m2m_author,backref='books') def __repr__(self): return self.name class Author(Base): __tablename__ = 'authors' id = Column(Integer, primary_key=True) name = Column(String(32)) def __repr__(self): return self.name Base.metadata.create_all(engine)
建立表數據:
Session = sessionmaker(bind=engine) session = Session() b1 = Book(name="learn python with Alex",pub_date="2014-05-02") b2 = Book(name="learn linux with Alex",pub_date="2015-05-02") b3 = Book(name="learn go with Alex",pub_date="2016-05-02") a1 = Author(name="Alex") a2 = Author(name="Jack") a3 = Author(name="Rain") #關鍵來了,建立關聯關係 b1.authors = [a1,a3] b3.authors = [a1,a2,a3] session.add_all([b1,b2,b3,a1,a2,a3]) session.commit()
查詢:
author_obj = session.query(Author).filter_by(name="Alex").first() print(author_obj,author_obj.books) book_obj = session.query(Book).filter_by(id=2).first() print(book_obj,book_obj.authors) # Alex [learn python with Alex, learn go with Alex] # learn go with Alex [Alex, Jack, Rain]
多對多刪除
刪除數據時不用管boo_m2m_authors , sqlalchemy會自動幫你把對應的數據刪除
經過書刪除做者
author_obj =s.query(Author).filter_by(name="Jack").first() book_obj = s.query(Book).filter_by(name="跟Alex學把妹").first() book_obj.authors.remove(author_obj) #從一本書裏刪除一個做者 s.commit()
直接刪除做者
刪除做者時,會把這個做者跟全部書的關聯關係數據也自動刪除
author_obj =s.query(Author).filter_by(name="Alex").first() # print(author_obj.name , author_obj.books) s.delete(author_obj) s.commit()