官方文檔html
# 檢查是否已經安裝以及版本號 >>> import sqlalchemy >>> sqlalchemy.__version__ ’1.1.4‘
>>> from sqlalchemy.ext.declarative import declarative_base # model都是要繼承自Base >>> Base = declarative_base() >>> from sqlalchemy import Column, Integer, String >>> class User(Base): ... __tablename__ = 'users' # 指定數據表名 ... ... id = Column(Integer, primary_key=True) ... name = Column(String(50)) ... fullname = Column(String(50)) ... password = Column(String(50)) ... ... def __repr__(self): ... return "<User(name='%s', fullname='%s', password='%s')>" % ( ... self.name, self.fullname, self.password) # 查看建立的數據表結構 >>> User.__table__ Table('users', MetaData(bind=None), Column('id', Integer(), table=<users>, primary_key=True, nullable=False), Column('name', String(length=50), table=<users>), Column('fullname', String(length=50), table=<users>), Column('password', String(length=50), table=<users>), schema=None)
正式建立數據表python
>>> from sqlalchemy import create_engine # 鏈接到mysql >>> engine = create_engine("mysql://root:root@localhost:3306/python?charset=utf8", encoding="utf-8", echo=True) # 正式建立數據表 >>> Base.metadata.create_all(engine) CREATE TABLE users ( id INTEGER NOT NULL AUTO_INCREMENT, name VARCHAR(50), fullname VARCHAR(50), password VARCHAR(50), PRIMARY KEY (id) )
下面的操做都是要經過會話對象操做mysql
>>> from sqlalchemy.orm import sessionmaker >>> Session = sessionmaker(bind=engine) >>> session = Session()
添加一個User對象git
>>> ed_user = User(name='ed', fullname='Ed Jones', password='edspassword') >>> session.add(ed_user)
查詢一下,使用filter_by
來過濾,first
只列出第一個查詢到的對象github
>>> our_user = session.query(User).filter_by(name='ed').first() BEGIN (implicit) INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('ed', 'Ed Jones', 'edspassword') SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name = ? LIMIT ? OFFSET ? ('ed', 1, 0) >>> our_user <User(name='ed', fullname='Ed Jones', password='edspassword')> >>> ed_user is our_user True
使用add_all
,一次性添加多個對象sql
>>> session.add_all([ ... User(name='wendy', fullname='Wendy Williams', password='foobar'), ... User(name='mary', fullname='Mary Contrary', password='xxg527'), ... User(name='fred', fullname='Fred Flinstone', password='blah')])
Session很智能,好比說,它知道Ed Jones被修改了數據庫
# 能夠直接修改ed_user對象 >>> ed_user.password = 'f8s7ccs' # session會自動知道哪些數據被修改了 >>> session.dirty IdentitySet([<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]) # session也能夠知道哪些對象被新建了 >>> session.new IdentitySet([<User(name='wendy', fullname='Wendy Williams', password='foobar')>, <User(name='mary', fullname='Mary Contrary', password='xxg527')>, <User(name='fred', fullname='Fred Flinstone', password='blah')>])
對數據庫進行了變動,天然要進行commit
,從echo
語句咱們能夠看出,咱們更新了1個對象,建立了3個對象。express
>>> session.commit() UPDATE users SET password=? WHERE users.id = ? ('f8s7ccs', 1) INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('wendy', 'Wendy Williams', 'foobar') INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('mary', 'Mary Contrary', 'xxg527') INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('fred', 'Fred Flinstone', 'blah') COMMIT >>> ed_user.id BEGIN (implicit) SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.id = ? (1,) 1
由於Session是工做在一個transaction內部,有時候咱們可能不當心作了一些誤刪除的操做,能夠回滾。咱們先修改ed_user的用戶名爲Edwardo
,而後從新添加一個新User,可是記住這個時候咱們尚未commit
。django
>>> ed_user.name = 'Edwardo' and we’ll add another erroneous user, fake_user: >>> fake_user = User(name='fakeuser', fullname='Invalid', password='12345') >>> session.add(fake_user) Querying the session, we can see that they’re flushed into the current transaction:
查詢檢驗一下api
>>> session.query(User).filter(User.name.in_(['Edwardo', 'fakeuser'])).all() UPDATE users SET name=? WHERE users.id = ? ('Edwardo', 1) INSERT INTO users (name, fullname, password) VALUES (?, ?, ?) ('fakeuser', 'Invalid', '12345') SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name IN (?, ?) ('Edwardo', 'fakeuser') [<User(name='Edwardo', fullname='Ed Jones', password='f8s7ccs')>, <User(name='fakeuser', fullname='Invalid', password='12345')>]
回滾,咱們能夠知道ed_user‘s name is back to ed
以及fake_user
has been kicked out of the session
>>> session.rollback() ROLLBACK >>> ed_user.name BEGIN (implicit) SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.id = ? (1,) u'ed' >>> fake_user in session False issuing a SELECT illustrates the changes made to the database:
這個時候再查詢,很明顯fakeuser已經消失了,ed
用戶的名字從新變回了ed
而不是Edwordo
>>> session.query(User).filter(User.name.in_(['ed', 'fakeuser'])).all() SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name IN (?, ?) ('ed', 'fakeuser') [<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]
用於查詢操做相對應的count()操做
>>> session.query(User).filter(User.name.like('%ed')).count() 2 >>> from sqlalchemy import func >>> session.query(func.count(User.name), User.name).group_by(User.name).all() [(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]
一個經過在Session上使用query
方法能夠建立一個Query
object
按照用戶id進行排序來進行查詢
>>> for instance in session.query(User).order_by(User.id): ... print(instance.name, instance.fullname) ed Ed Jones wendy Wendy Williams mary Mary Contrary fred Fred Flinstone
query方法也能夠接收ORM-instrumented descriptors做爲參數。返回結果是一個named tuples
>>> for name, fullname in session.query(User.name, User.fullname): ... print(name, fullname) ed Ed Jones wendy Wendy Williams mary Mary Contrary fred Fred Flinstone
The tuples returned by Query are named tuples, supplied by the KeyedTuple class, and can be treated much like an ordinary Python object. The names are the same as the attribute’s name for an attribute, and the class name for a class:
>>> for row in session.query(User, User.name).all(): ... print(row.User, row.name) <User(name='ed', fullname='Ed Jones', password='f8s7ccs')> ed <User(name='wendy', fullname='Wendy Williams', password='foobar')> wendy <User(name='mary', fullname='Mary Contrary', password='xxg527')> mary <User(name='fred', fullname='Fred Flinstone', password='blah')> fred
You can control the names of individual column expressions using the label()
construct, which is available from any ColumnElement-derived object, as well as any class attribute which is mapped to one (such as User.name):
>>> for row in session.query(User.name.label('name_label')).all(): ... print(row.name_label) ed wendy mary fred
The name given to a full entity such as User, assuming that multiple entities are present in the call to query(), can be controlled using aliased()
:
>>> from sqlalchemy.orm import aliased >>> user_alias = aliased(User, name='user_alias') >>> for row in session.query(user_alias, user_alias.name).all(): ... print(row.user_alias) <User(name='ed', fullname='Ed Jones', password='f8s7ccs')> <User(name='wendy', fullname='Wendy Williams', password='foobar')> <User(name='mary', fullname='Mary Contrary', password='xxg527')> <User(name='fred', fullname='Fred Flinstone', password='blah')>
Basic operations with Query include issuing LIMIT and OFFSET, most conveniently using Python array slices and typically in conjunction with ORDER BY
:
>>> for u in session.query(User).order_by(User.id)[1:3]: ... print(u) <User(name='wendy', fullname='Wendy Williams', password='foobar')> <User(name='mary', fullname='Mary Contrary', password='xxg527')> and filtering results, which is accomplished either with filter_by(), which uses keyword arguments: >>> for name, in session.query(User.name).\ ... filter_by(fullname='Ed Jones'): ... print(name) ed >>> for name, in session.query(User.name).\ ... filter(User.fullname=='Ed Jones'): ... print(name) ed
The Query object is fully generative, meaning that most method calls return a new Query object upon which further criteria may be added. For example, to query for users named 「ed」 with a full name of 「Ed Jones」, you can call filter()
twice, which joins criteria using AND
:
>>> for user in session.query(User).\ ... filter(User.name=='ed').\ ... filter(User.fullname=='Ed Jones'): ... print(user) <User(name='ed', fullname='Ed Jones', password='f8s7ccs')> Common Filter Operators
下面列出了filter()
最經常使用的一些operators
equals: query.filter(User.name == 'ed') not equals: query.filter(User.name != 'ed') LIKE: query.filter(User.name.like('%ed%')) IN: query.filter(User.name.in_(['ed', 'wendy', 'jack'])) # works with query objects too: query.filter(User.name.in_( session.query(User.name).filter(User.name.like('%ed%')) )) NOT IN: query.filter(User.name.in_(['ed', 'wendy', 'jack'])) IS NULL: query.filter(User.name == None) # alternatively, if pep8/linters are a concern query.filter(User.name.is_(None)) IS NOT NULL: query.filter(User.name != None) # alternatively, if pep8/linters are a concern query.filter(User.name.isnot(None)) AND: # use and_() from sqlalchemy import and_ query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones')) # or send multiple expressions to .filter() query.filter(User.name == 'ed', User.fullname == 'Ed Jones') # or chain multiple filter()/filter_by() calls query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones') Note Make sure you use and_() and not the Python and operator! OR: from sqlalchemy import or_ query.filter(or_(User.name == 'ed', User.name == 'wendy')) Note Make sure you use or_() and not the Python or operator! MATCH: query.filter(User.name.match('wendy')) Note match() uses a database-specific MATCH or CONTAINS function; its behavior will vary by backend and is not available on some backends such as SQLite.
建立對象與對象之間的關係,下面咱們新建一個Address表,下面的操做相比django的orm繁瑣一些,要同時在兩個class內部同時設置relationship
>>> from sqlalchemy import ForeignKey >>> from sqlalchemy.orm import relationship >>> class Address(Base): ... __tablename__ = 'addresses' ... id = Column(Integer, primary_key=True) ... email_address = Column(String(50), nullable=False) ... user_id = Column(Integer, ForeignKey('users.id')) ... ... user = relationship("User", back_populates="addresses") # 將地址表和用戶表關聯 ... ... def __repr__(self): ... return "<Address(email_address='%s')>" % self.email_address # 在用戶表中還要從新設置一次 >>> User.addresses = relationship( ... "Address", order_by=Address.id, back_populates="user") >>> Base.metadata.create_all(engine)
如今咱們建立了一個User,與它對應的一個空addresses集合也將創立。集合類型能夠是各類合法類型,好比set/dictionaries(see Customizing Collection Access for details),可是默認集合是一個list。
如今咱們再來建立一個用戶Jack
>>> jack = User(name='jack', fullname='Jack Bean', password='gjffdd') >>> jack.addresses []
We are free to add Address objects on our User object. In this case we just assign a full list directly:
如今咱們將用戶Jack和一些地址關聯起來
>>> jack.addresses = [ ... Address(email_address='jack@google.com'), ... Address(email_address='j25@yahoo.com')]
When using a bidirectional relationship, elements added in one direction automatically become visible in the other direction. This behavior occurs based on attribute on-change events and is evaluated in Python, without using any SQL:
如今能夠經過地址對象訪問用戶對象了
>>> jack.addresses[1] <Address(email_address='j25@yahoo.com')> >>> jack.addresses[1].user <User(name='jack', fullname='Jack Bean', password='gjffdd')>
Let’s add and commit Jack Bean to the database. jack as well as the two Address members in the corresponding addresses collection are both added to the session at once, using a process known as cascading:
接下來commit
保存到數據庫
>>> session.add(jack) >>> session.commit() sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s) sqlalchemy.engine.base.Engine ('jack@google.com', 5L) sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s) sqlalchemy.engine.base.Engine ('j25@yahoo.com', 5L) sqlalchemy.engine.base.Engine COMMIT
Querying for Jack, we get just Jack back. No SQL is yet issued for Jack’s addresses:
>>> jack = session.query(User).\ ... filter_by(name='jack').one() >>> jack <User(name='jack', fullname='Jack Bean', password='gjffdd')> Let’s look at the addresses collection. Watch the SQL: >>> jack.addresses [<Address(email_address='jack@google.com')>, <Address(email_address='j25@yahoo.com')>]
When we accessed the addresses collection, SQL was suddenly issued. This is an example of a lazy loading relationship. The addresses collection is now loaded and behaves just like an ordinary list. We’ll cover ways to optimize the loading of this collection in a bit.
刪除操做,接下來咱們嘗試刪除jack對象,注意地址對象並不會所以而刪除
>>> session.delete(jack) >>> session.query(User).filter_by(name='jack').count() 0 So far, so good. How about Jack’s Address objects ? >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 2
Uh oh, they’re still there ! Analyzing the flush SQL, we can see that the user_id column of each address was set to NULL, but the rows weren’t deleted
. SQLAlchemy doesn’t assume that deletes cascade
, you have to tell it to do so. Configuring delete/delete-orphan Cascade
. We will configure cascade options on the User.addresses relationship
to change the behavior. While SQLAlchemy allows you to add new attributes and relationships to mappings at any point in time, in this case the existing relationship needs to be removed, so we need to tear down the mappings completely and start again - we’ll close the Session:
直接close來rollback,並不進行commit
>>> session.close() ROLLBACK
Use a new declarative_base():
>>> Base = declarative_base()
Next we’ll declare the User class, adding in the addresses relationship
including the cascade configuration (we’ll leave the constructor out too):
>>> class User(Base): ... __tablename__ = 'users' ... ... id = Column(Integer, primary_key=True) ... name = Column(String(50)) ... fullname = Column(String(50)) ... password = Column(String(50)) ... ... addresses = relationship("Address", back_populates='user', ... cascade="all, delete, delete-orphan") ... ... def __repr__(self): ... return "<User(name='%s', fullname='%s', password='%s')>" % ( ... self.name, self.fullname, self.password)
Then we recreate Address, noting that in this case
we’ve created the Address.user relationship via the User class already:
>>> class Address(Base): ... __tablename__ = 'addresses' ... id = Column(Integer, primary_key=True) ... email_address = Column(String(50), nullable=False) ... user_id = Column(Integer, ForeignKey('users.id')) ... user = relationship("User", back_populates="addresses") ... ... def __repr__(self): ... return "<Address(email_address='%s')>" % self.email_address
Now when we load the user jack (below using get(), which loads by primary key), removing an address from the corresponding addresses collection will result in that Address being deleted:
# load Jack by primary key >>> jack = session.query(User).get(5) # remove one Address (lazy load fires off) >>> del jack.addresses[1] # only one address remains >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 1
Deleting Jack will delete both Jack and the remaining Address associated with the user:
>>> session.delete(jack) >>> session.query(User).filter_by(name='jack').count() 0 >>> session.query(Address).filter( ... Address.email_address.in_(['jack@google.com', 'j25@yahoo.com']) ... ).count() 0
Further detail on configuration of cascades is at Cascades. The cascade functionality can also integrate smoothly with the ON DELETE CASCADE functionality of the relational database. See Using Passive Deletes for details.
上面同時設置兩個relationship太麻煩了,可使用backref
from sqlalchemy import Integer, ForeignKey, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) addresses = relationship("Address", backref="user") class Address(Base): __tablename__ = 'address' id = Column(Integer, primary_key=True) email = Column(String) user_id = Column(Integer, ForeignKey('user.id'))
The above configuration establishes a collection of Address objects on User called User.addresses
. It also establishes a .user
attribute on Address which will refer to the parent User object.
In fact, the backref keyword is only a common shortcut for placing a second relationship() onto the Address mapping, including the establishment of an event listener on both sides which will mirror attribute operations in both directions. The above configuration is equivalent to:
rom sqlalchemy import Integer, ForeignKey, String, Column from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) name = Column(String) addresses = relationship("Address", back_populates="user") class Address(Base): __tablename__ = 'address' id = Column(Integer, primary_key=True) email = Column(String) user_id = Column(Integer, ForeignKey('user.id')) user = relationship("User", back_populates="addresses")
Above, we add a .user relationship to Address explicitly. On both relationships, the back_populates
directive tells each relationship about the other one, indicating that they should establish 「bidirectional」 behavior between each other. The primary effect of this configuration is that the relationship adds event handlers to both attributes which have the behavior of 「when an append or set event occurs here, set ourselves onto the incoming attribute using this particular attribute name」. The behavior is illustrated as follows. Start with a User and an Address instance. The .addresses collection
is empty, and the .user attribute is None
:
>>> u1 = User() >>> a1 = Address() >>> u1.addresses [] >>> print(a1.user) None
However, once the Address is appended to the u1.addresses collection, both the collection and the scalar attribute have been populated:
>>> u1.addresses.append(a1) >>> u1.addresses [<__main__.Address object at 0x12a6ed0>] >>> a1.user <__main__.User object at 0x12a6590>
This behavior of course works in reverse for removal operations as well, as well as for equivalent operations on both sides. Such as when .user is set again to None, the Address object is removed from the reverse collection:
>>> a1.user = None >>> u1.addresses []
The manipulation of the .addresses collection and the .user attribute occurs entirely in Python without any interaction with the SQL database. Without this behavior, the proper state would be apparent on both sides once the data has been flushed to the database, and later reloaded after a commit or expiration operation occurs. The backref/back_populates behavior has the advantage that common bidirectional operations can reflect the correct state without requiring a database round trip.
Remember, when the backref keyword is used on a single relationship, it’s exactly the same as if the above two relationships were created individually using back_populates on each.
檢驗一下咱們上面的成果以及熟悉建立的mysql表的結構
地址表的結構
> SHOW CREATE TABLE addresses; +-----------+----------------+ | Table | Create Table | |-----------+----------------| | addresses | CREATE TABLE `addresses` ( `id` int(11) NOT NULL AUTO_INCREMENT, `email_address` varchar(50) NOT NULL, `user_id` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `user_id` (`user_id`), CONSTRAINT `addresses_ibfk_1` FOREIGN KEY (`user_id`) REFERENCES `users` (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 | +-----------+----------------+ 1 row in set Time: 0.005s > DESC addresses; +---------------+-------------+--------+-------+-----------+----------------+ | Field | Type | Null | Key | Default | Extra | |---------------+-------------+--------+-------+-----------+----------------| | id | int(11) | NO | PRI | <null> | auto_increment | | email_address | varchar(50) | NO | | <null> | | | user_id | int(11) | YES | MUL | <null> | | +---------------+-------------+--------+-------+-----------+----------------+ 3 rows in set Time: 0.002s
用戶表的結構
> SHOW CREATE TABLE users; +---------+----------------+ | Table | Create Table | |---------+----------------| | users | CREATE TABLE `users` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(50) DEFAULT NULL, `fullname` varchar(50) DEFAULT NULL, `password` varchar(50) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=utf8 | +---------+----------------+ 1 row in set Time: 0.002s > DESC users; +----------+-------------+--------+-------+-----------+----------------+ | Field | Type | Null | Key | Default | Extra | |----------+-------------+--------+-------+-----------+----------------| | id | int(11) | NO | PRI | <null> | auto_increment | | name | varchar(50) | YES | | <null> | | | fullname | varchar(50) | YES | | <null> | | | password | varchar(50) | YES | | <null> | | +----------+-------------+--------+-------+-----------+----------------+ 4 rows in set Time: 0.003s
詳細數據
> SELECT * FROM addresses; +------+-----------------+-----------+ | id | email_address | user_id | |------+-----------------+-----------| | 3 | jack@google.com | 5 | | 4 | j25@yahoo.com | 5 | +------+-----------------+-----------+ 2 rows in set Time: 0.002s > SELECT * FROM users; +------+--------+----------------+------------+ | id | name | fullname | password | |------+--------+----------------+------------| | 1 | ed | Ed Jones | f8s7ccs | | 2 | wendy | Wendy Williams | foobar | | 3 | mary | Mary Contrary | xxg527 | | 4 | fred | Fred Flinstone | blah | | 5 | jack | Jack Bean | gjffdd | +------+--------+----------------+------------+ 5 rows in set Time: 0.003s
from sqlalchemy import Column, String, Integer, create_engine, SmallInteger from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base DB_URI = 'sqlite:///user.db' Base = declarative_base() engine = create_engine(DB_URI) Base.metadata.bind = engine Session = sessionmaker(bind=engine) session = Session()
class User(Base): __tablename__ = 'live_user' id = Column(Integer, unique=True, primary_key=True, autoincrement=True) speaker_id = Column(String(40), index=True, unique=True) name = Column(String(40), index=True, nullable=False) gender = Column(SmallInteger, default=2) headline = Column(String(200)) avatar_url = Column(String(100), nullable=False) bio = Column(String(200)) description = Column(String()) @classmethod def add(cls, **kwargs): speaker_id = kwargs.get('speaker_id', None) if id is not None: r = session.query(cls).filter_by(speaker_id=speaker_id).first() if r: return r try: r = cls(**kwargs) session.add(r) session.commit() except: session.rollback() raise else: return r
Base.metadata.create_all()
接口分爲2種:
elasticsearch-dsl-py相比elasticsearch-py作了各類封裝,DSL也支持用類表明一個doc_type(相似數據庫中的Table),實現ORM的效果。咱們就用它來寫Live模型:
from elasticsearch_dsl import DocType, Date, Integer, Text, Float, Boolean from elasticsearch_dsl.connections import connections from elasticsearch_dsl.query import SF, Q from config import SEARCH_FIELDS from .speaker import User, session connections.create_connection(hosts=['localhost'])
class Live(DocType): id = Integer() speaker_id = Integer() feedback_score = Float() # 評分 topic_names = Text(analyzer='ik_max_word') # 話題標籤名字 seats_taken = Integer() # 參與人數 subject = Text(analyzer='ik_max_word') # 標題 amount = Float() # 價格(RMB) description = Text(analyzer='ik_max_word') status = Boolean() # public(True)/ended(False) starts_at = Date() outline = Text(analyzer='ik_max_word') # Live內容 speaker_message_count = Integer() tag_names = Text(analyzer='ik_max_word') liked_num = Integer() class Meta: index = 'live' @classmethod def add(cls, **kwargs): id = kwargs.pop('id', None) if id is None: return False live = cls(meta={'id': id}, **kwargs) live.save() return live
它容許咱們用一種很是可維護的方法來組織字典:
In : from elasticsearch_dsl.query import Q In : Q('multi_match', subject='python').to_dict() Out: {'multi_match': {'subject': 'python'}}
In : from elasticsearch import Elasticsearch In : from elasticsearch_dsl import Search, Q In : s = Search(using=client, index='live') In : s = s.query('match', subject='python').query(~Q('match', description='量化')) In : s.execute() Out: <Response: [<Hit(live/live/789840559912009728): {'subject': 'Python 工程師的入門和進階', 'feedback_score': 4.5, 'stat...}>]>
上述例子表示從live這個索引(相似數據庫中的Database)中找到subject字典包含python,可是description字段不包含量化的Live。