前面介紹了namenode的safemode模式,本篇博客博主將爲小夥伴們深度解析hadoop集羣HA高可用搭建的全過程。java
1、集羣規劃node
主機名 IP 安裝的軟件 運行的進程
centos-aaron-ha-01 192.168.29.149 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
centos-aaron-ha-02 192.168.29.150 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
centos-aaron-ha-03 192.168.29.151 jdk、hadoop ResourceManager
centos-aaron-ha-04 192.168.29.152 jdk、hadoop ResourceManager
centos-aaron-ha-05 192.168.29.153 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
centos-aaron-ha-06 192.168.29.154 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
centos-aaron-ha-07 192.168.29.155 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMainlinux
2、服務器基礎環境準備(主機名、ip、域名映射、防火牆關閉、ssh免密登陸、jdk)web
(1)克隆7臺centos6.9 mini版系統shell
(2)基礎網絡配置(主機名、ip、網卡、域名映射)apache
詳細操做請查看大數據教程(2.1):VMware虛擬機克隆(網絡配置問題)bootstrap
(3)防火牆關閉 centos
#關閉selinux sudo vi /etc/sysconfig/selinux 修改enforcing爲disabled #查看防火牆狀態 sudo service iptables status #關閉防火牆 sudo service iptables stop #永久關閉防火牆 sudo chkconfig iptables off
(4)hadoop帳戶配置(hadoop/hadoop)、sudo權限瀏覽器
*****添加用戶 useradd hadoop 要修改密碼才能登錄 passwd hadoop 按提示輸入密碼便可 **爲用戶配置sudo權限 用root編輯 vi /etc/sudoers 在文件的以下位置,爲hadoop添加一行便可 root ALL=(ALL) ALL hadoop ALL=(ALL) ALL 而後,hadoop用戶就能夠用sudo來執行系統級別的指令 [hadoop@shizhan ~]$ sudo useradd huangxiaoming
(5)ssh免密登陸配置(centos-aaron-ha-01/centos-aaron-ha-03)服務器
因爲centos-aaron-ha-01用於啓動hdfs系統,因此需配置到其它幾臺服務器的ssh免密登錄;而centos-aaron-ha-03用於啓動yarn系統,一樣須要配置到其它幾臺服務器的ssh免密登錄。
#注意:如下命令需在全部服務器上執行、不然後面的遠程拷貝、ssh均可能不能正常使用 sudo rpm -qa|grep ssh 檢查服務器上已經安裝了的ssh相關軟件 sudo yum list|grep ssh 檢查yum倉庫中可用的ssh相關的軟件包 sudo yum -y install openssh-server 安裝服務端 sudo yum -y install openssh-clinets 安裝客戶端 (sudo yum -y install openssh-clients.x86_64)
a.域名映射配置並分發到全部服務器
vi /etc/hosts #新增 192.168.29.149 centos-aaron-ha-01 192.168.29.150 centos-aaron-ha-02 192.168.29.151 centos-aaron-ha-03 192.168.29.152 centos-aaron-ha-04 192.168.29.153 centos-aaron-ha-05 192.168.29.154 centos-aaron-ha-06 192.168.29.155 centos-aaron-ha-07 #經過scp分發到其它幾臺服務器 sudo scp /etc/hosts root@192.168.29.150:/etc/hosts sudo scp /etc/hosts root@192.168.29.151:/etc/hosts sudo scp /etc/hosts root@192.168.29.152:/etc/hosts sudo scp /etc/hosts root@192.168.29.153:/etc/hosts sudo scp /etc/hosts root@192.168.29.154:/etc/hosts sudo scp /etc/hosts root@192.168.29.155:/etc/hosts
b.首先要配置centos-aaron-ha-01到centos-aaron-ha-0一、centos-aaron-ha-0二、centos-aaron-ha-0三、centos-aaron-ha-0四、centos-aaron-ha-0五、centos-aaron-ha-0六、centos-aaron-ha-07的免密碼登錄
#在centos-aaron-ha-01上生產一對鑰匙 ssh-keygen -t rsa #將公鑰拷貝到其餘節點,包括本身 ssh-copy-id hadoop@centos-aaron-ha-01 ssh-copy-id hadoop@centos-aaron-ha-02 ssh-copy-id hadoop@centos-aaron-ha-03 ssh-copy-id hadoop@centos-aaron-ha-04 ssh-copy-id hadoop@centos-aaron-ha-05 ssh-copy-id hadoop@centos-aaron-ha-06 ssh-copy-id hadoop@centos-aaron-ha-07
c.配置centos-aaron-ha-03到centos-aaron-ha-0三、centos-aaron-ha-0四、centos-aaron-ha-0五、centos-aaron-ha-0六、centos-aaron-ha-07的免密碼登錄
#在centos-aaron-ha-03上生產一對鑰匙 ssh-keygen -t rsa #將公鑰拷貝到其餘節點 ssh-copy-id centos-aaron-ha-03 ssh-copy-id centos-aaron-ha-04 ssh-copy-id centos-aaron-ha-05 ssh-copy-id centos-aaron-ha-06 ssh-copy-id centos-aaron-ha-07
d.注意:兩個namenode之間要配置ssh免密碼登錄,別忘了配置centos-aaron-ha-02到centos-aaron-ha-01的免登錄
在centos-aaron-ha-02上生產一對鑰匙 ssh-keygen -t rsa ssh-copy-id centos-aaron-ha-01
(6)jdk1.8配置(以centos-aaron-ha-01爲主節點開始安裝)
#進入文件上傳ssh Alt+p lcd d:/ put jdk-8u191-linux-x64.tar.gz sudo tar -zxvf jdk-8u191-linux-x64.tar.gz -C /usr/local #編輯配置文件 sudo vi /etc/profile #跳到最後 shift+G #新增一行插入內容 o #添加下面內容到最後 JAVA_HOME=/usr/local/jdk1.8.0_191/ PATH=$JAVA_HOME/bin:$PATH CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export JAVA_HOME export PATH export CLASSPATH #保存(Esc->shift+:->wq!->回車) shift+z+z #分發到全部服務器 sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.150:/usr/local/ sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.151:/usr/local/ sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.152:/usr/local/ sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.153:/usr/local/ sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.154:/usr/local/ sudo scp -r /usr/local/jdk1.8.0_191 root@192.168.29.155:/usr/local/ sudo scp /etc/profile root@192.168.29.150:/etc/profile sudo scp /etc/profile root@192.168.29.151:/etc/profile sudo scp /etc/profile root@192.168.29.152:/etc/profile sudo scp /etc/profile root@192.168.29.153:/etc/profile sudo scp /etc/profile root@192.168.29.154:/etc/profile sudo scp /etc/profile root@192.168.29.155:/etc/profile #配置生效 source /etc/profile #jdk環境校驗 java -version
(7)zookeeper安裝(以centos-aaron-ha-05爲主節點開始安裝)
#上傳zookeeper scp zookeeper-3.4.13.tar.gz hadoop@192.168.29.153:/home/hadoop #解壓zookeeper mkdir /home/hadoop/apps/ tar -zxvf zookeeper-3.4.13.tar.gz -C apps/ #修改配置未見 cd /home/hadoop/apps/zookeeper-3.4.13/conf/ cp zoo_sample.cfg zoo.cfg vi zoo.cfg #新增如下內容,並刪除以前的默認dataDir配置 dataDir=/home/hadoop/apps/zookeeper-3.4.13/data dataLogDir=/home/hadoop/apps/zookeeper-3.4.13/log server.1=192.168.29.153:2888:3888 server.2=192.168.29.154:2888:3888 server.3=192.168.29.155:2888:3888 #新增data、log目錄並賦權 cd /home/hadoop/apps/zookeeper-3.4.13/ mkdir -m 755 data mkdir -m 755 log #在/opt/apps/zookeeper-3.4.13/data文件夾下新建myid文件,myid的文件內容爲server.1後面的1(此處需參照當前服務器id進行配置) cd data vi myid 或者 echo "1" > myid #將集羣分發到 scp -r /home/hadoop/apps/zookeeper-3.4.13 hadoop@192.168.29.154:/home/hadoop/apps/ scp -r /home/hadoop/apps/zookeeper-3.4.13 hadoop@192.168.29.155:/home/hadoop/apps/ #修改其餘機器的配置文件 192.168.29.154上:修改myid爲:2 192.168.29.155上:修改myid爲:3 #啓動zookeeper /home/hadoop/apps/zookeeper-3.4.13/bin/zkServer.sh start #查看集羣狀態 jps(查看進程) /home/hadoop/apps/zookeeper-3.4.13/bin/zkServer.sh status(查看集羣狀態,主從信息) #關閉集羣 /home/hadoop/apps/zookeeper-3.4.13/bin/zkServer.sh stop
3、 hadoop HA集羣搭建
(1)上傳centos6.9-hadoop-2.9.1.tar.gz
(2)解壓hadoop到/home/hadoop/apps/目錄:tar -zxvf centos6.9-hadoop-2.9.1.tar.gz -C /home/hadoop/apps/
(3)修改hadoop-env.sh、yarn-env.sh中JAVA_HOME目錄爲真實目錄
cd /home/hadoop/apps/hadoop-2.9.1/etc/hadoop vi hadoop-env.sh #修改如下這句後面的值爲以下 export JAVA_HOME=/usr/local/jdk1.8.0_191 vi yarn-env.sh #將export JAVA_HOME註釋放開,而且修改這句後面的值爲以下 export JAVA_HOME=/usr/local/jdk1.8.0_191
(4)將hadoop添加到環境變量中
#修改centos-aaron-ha-01的配置 vi /etc/profile export HADOOP_HOME=/home/hadoop/apps/hadoop-2.9.1/ export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin #分發配置 sudo scp /etc/profile root@192.168.29.150:/etc/profile sudo scp /etc/profile root@192.168.29.151:/etc/profile sudo scp /etc/profile root@192.168.29.152:/etc/profile sudo scp /etc/profile root@192.168.29.153:/etc/profile sudo scp /etc/profile root@192.168.29.154:/etc/profile sudo scp /etc/profile root@192.168.29.155:/etc/profile #配置生效 source /etc/profile
(5)配置core-site.xml文件
<configuration> <!-- 指定hdfs的nameservice爲ns1 --> <property> <name>fs.defaultFS</name> <value>hdfs://bi/</value> </property> <!-- 指定hadoop臨時目錄 --> <property> <name>hadoop.tmp.dir</name> <value>/home/hadoop/hdpdata</value> </property> <!-- 指定zookeeper地址 --> <property> <name>ha.zookeeper.quorum</name> <value>centos-aaron-ha-05:2181,centos-aaron-ha-06:2181,centos-aaron-ha-07:2181</value> </property> </configuration>
(6)修改hdfs-site.xml
<configuration> <!--指定hdfs的nameservice爲bi,須要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>bi</value> </property> <!-- bi下面有兩個NameNode,分別是nn1,nn2 --> <property> <name>dfs.ha.namenodes.bi</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通訊地址 --> <property> <name>dfs.namenode.rpc-address.bi.nn1</name> <value>centos-aaron-ha-01:9000</value> </property> <!-- nn1的http通訊地址 --> <property> <name>dfs.namenode.http-address.bi.nn1</name> <value>centos-aaron-ha-01:50070</value> </property> <!-- nn2的RPC通訊地址 --> <property> <name>dfs.namenode.rpc-address.bi.nn2</name> <value>centos-aaron-ha-02:9000</value> </property> <!-- nn2的http通訊地址 --> <property> <name>dfs.namenode.http-address.bi.nn2</name> <value>centos-aaron-ha-02:50070</value> </property> <!-- 指定NameNode的edits元數據在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://centos-aaron-ha-05:8485;centos-aaron-ha-06:8485;centos-aaron-ha-07:8485/bi</value> </property> <!-- 指定JournalNode在本地磁盤存放數據的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/home/hadoop/journaldata</value> </property> <!-- 開啓NameNode失敗自動切換 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失敗自動切換實現方式 --> <property> <name>dfs.client.failover.proxy.provider.bi</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 配置隔離機制方法,多個機制用換行分割,即每一個機制暫用一行--> <property> <name>dfs.ha.fencing.methods</name> <value> sshfence shell(/bin/true) </value> </property> <!-- 使用sshfence隔離機制時須要ssh免登錄 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> <!-- 配置sshfence隔離機制超時時間 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property> </configuration>
(7)修改mapred-site.xml
<configuration> <!-- 指定mr框架爲yarn方式 --> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.application.classpath</name> <value>/home/hadoop/apps/hadoop-2.9.1/share/hadoop/mapreduce/*, /home/hadoop/apps/hadoop-2.9.1/share/hadoop/mapreduce/lib/*</value> </property> </configuration>
(8)修改yarn-site.xml
<configuration> <!-- 開啓RM高可用 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分別指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>centos-aaron-ha-03</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>centos-aaron-ha-04</value> </property> <!-- 表示rm1,rm2的網頁訪問地址和端口,也即經過該地址和端口可訪問做業狀況 --> <property> <name>yarn.resourcemanager.webapp.address.rm1</name> <value>centos-aaron-ha-03:8088</value> </property> <property> <name>yarn.resourcemanager.webapp.address.rm2</name> <value>centos-aaron-ha-04:8088</value> </property> <!-- 指定zk集羣地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>centos-aaron-ha-05:2181,centos-aaron-ha-06:2181,centos-aaron-ha-07:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration>
(9)將配置好的hadoop分發到其它幾臺服務器
sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-02:/home/hadoop/apps sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-03:/home/hadoop/apps sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-04:/home/hadoop/apps sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-05:/home/hadoop/apps sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-06:/home/hadoop/apps sudo scp -r /home/hadoop/apps/ hadoop@centos-aaron-ha-07:/home/hadoop/apps
(10)修改slaves(slaves是指定子節點的位置,由於要在cetnos-aaron-ha-01上啓動HDFS、在cetnos-aaron-ha-03啓動yarn,因此cetnos-aaron-ha-01上的slaves文件指定的是datanode的位置,cetnos-aaron-ha-03上的slaves文件指定的是nodemanager的位置)
vi /home/hadoop/apps/hadoop-2.9.1/etc/hadoop/slaves #新增覆蓋 centos-aaron-ha-05 centos-aaron-ha-06 centos-aaron-ha-07
(11)啓動zookeeper集羣(分別在centos-aaron-ha-0五、centos-aaron-ha-0六、centos-aaron-ha-07上啓動zk)
cd /home/hadoop/apps/zookeeper-3.4.13/bin/ ./zkServer.sh start #查看狀態:一個leader,兩個follower ./zkServer.sh status
(12)啓動journalnode(分別在centos-aaron-ha-0五、centos-aaron-ha-0六、centos-aaron-ha-07上執行)
cd /home/hadoop/apps/hadoop-2.9.1/ sbin/hadoop-daemon.sh start journalnode #運行jps命令檢驗,centos-aaron-ha-0五、centos-aaron-ha-0六、centos-aaron-ha-07上多了JournalNode進程
(13)格式化HDFS
#在centos-aaron-ha-01上執行命令: hdfs namenode -format #格式化後會在根據core-site.xml中的hadoop.tmp.dir配置生成個文件,這裏我配置的是/home/hadoop/hdpdata/,而後將/home/hadoop/hdpdata/拷貝到centos-aaron-ha-02的/home/hadoop/hdpdata/下。 scp -r hdpdata/ centos-aaron-ha-02:/home/hadoop/ ##也能夠這樣,建議hdfs namenode -bootstrapStandby 【注:此步驟需先啓動centos-aaron-ha-01上的namenode: hadoop-daemon.sh start namenode】
(14)格式化ZKFC(在centos-aaron-ha-01上執行一次便可)
hdfs zkfc -formatZK
(15)啓動HDFS(在centos-aaron-ha-01上執行)
sh start-dfs.sh
(16)啓動YARN(注意:是在centos-aaron-ha-03上執行start-yarn.sh,把namenode和resourcemanager分開是由於性能問題,由於他們都要佔用大量資源,因此把他們分開了,他們分開了就要分別在不一樣的機器上啓動)
sh start-yarn.sh
(17) 在 centos-aaron-ha-04上啓動resourcemanager
yarn-daemon.sh start resourcemanager
(18)到此,hadoop-2.9.1配置完畢,能夠統計瀏覽器訪問:
http://centos-aaron-ha-01:50070 NameNode 'hadoop01:9000' (active) http://centos-aaron-ha-02:50070 NameNode 'hadoop02:9000' (standby)
(19)驗證HDFS HA
首先向hdfs上傳一個文件 hadoop fs -put /etc/profile /profile hadoop fs -ls / 而後再kill掉active的NameNode kill -9 <pid of NN> 經過瀏覽器訪問:http://centos-aaron-ha-01:50070 NameNode 'centos-aaron-ha-01:9000' (active) 這個時候centos-aaron-ha-02上的NameNode變成了active 在執行命令: hadoop fs -ls / -rw-r--r-- 3 hadoop supergroup 2111 2019-01-06 14:07 /profile 剛纔上傳的文件依然存在!!! 手動啓動那個掛掉的NameNode hadoop-daemon.sh start namenode 經過瀏覽器訪問:http://centos-aaron-ha-02:50070 NameNode 'centos-aaron-ha-02:9000' (standby)
(20)驗證YARN:運行一下hadoop提供的demo中的WordCount程序:
hadoop jar /home/hadoop/apps/hadoop-2.9.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.1.jar wordcount hdfs://bi/profile /out
4、運行效果
[hadoop@centos-aaron-ha-03 hadoop]$ hadoop jar /home/hadoop/apps/hadoop-2.9.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.1.jar wordcount hdfs://bi/bxx /out2 19/01/08 18:43:16 INFO input.FileInputFormat: Total input files to process : 1 19/01/08 18:43:17 INFO mapreduce.JobSubmitter: number of splits:1 19/01/08 18:43:17 INFO Configuration.deprecation: yarn.resourcemanager.zk-address is deprecated. Instead, use hadoop.zk.address 19/01/08 18:43:17 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled 19/01/08 18:43:17 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1546944151190_0001 19/01/08 18:43:17 INFO impl.YarnClientImpl: Submitted application application_1546944151190_0001 19/01/08 18:43:17 INFO mapreduce.Job: The url to track the job: http://centos-aaron-ha-03:8088/proxy/application_1546944151190_0001/ 19/01/08 18:43:17 INFO mapreduce.Job: Running job: job_1546944151190_0001 19/01/08 18:43:26 INFO mapreduce.Job: Job job_1546944151190_0001 running in uber mode : false 19/01/08 18:43:26 INFO mapreduce.Job: map 0% reduce 0% 19/01/08 18:43:33 INFO mapreduce.Job: map 100% reduce 0% 19/01/08 18:43:39 INFO mapreduce.Job: map 100% reduce 100% 19/01/08 18:43:39 INFO mapreduce.Job: Job job_1546944151190_0001 completed successfully 19/01/08 18:43:39 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=98 FILE: Number of bytes written=401749 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=122 HDFS: Number of bytes written=60 HDFS: Number of read operations=6 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=1 Launched reduce tasks=1 Data-local map tasks=1 Total time spent by all maps in occupied slots (ms)=4081 Total time spent by all reduces in occupied slots (ms)=3394 Total time spent by all map tasks (ms)=4081 Total time spent by all reduce tasks (ms)=3394 Total vcore-milliseconds taken by all map tasks=4081 Total vcore-milliseconds taken by all reduce tasks=3394 Total megabyte-milliseconds taken by all map tasks=4178944 Total megabyte-milliseconds taken by all reduce tasks=3475456 Map-Reduce Framework Map input records=5 Map output records=8 Map output bytes=76 Map output materialized bytes=98 Input split bytes=78 Combine input records=8 Combine output records=8 Reduce input groups=8 Reduce shuffle bytes=98 Reduce input records=8 Reduce output records=8 Spilled Records=16 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=176 CPU time spent (ms)=1030 Physical memory (bytes) snapshot=362827776 Virtual memory (bytes) snapshot=4141035520 Total committed heap usage (bytes)=139497472 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=44 File Output Format Counters Bytes Written=60 [hadoop@centos-aaron-ha-03 hadoop]$
[hadoop@centos-aaron-ha-03 hadoop]$ hdfs dfs -ls /out2 Found 2 items -rw-r--r-- 3 hadoop supergroup 0 2019-01-08 18:43 /out2/_SUCCESS -rw-r--r-- 3 hadoop supergroup 60 2019-01-08 18:43 /out2/part-r-00000 [hadoop@centos-aaron-ha-03 hadoop]$ hdfs dfs -cat /out2/part-r-00000 ddfsZZ 1 df 1 dsfsd 1 hello 1 sdfdsf 1 sdfsd 1 sdss 1 xxx 1 [hadoop@centos-aaron-ha-03 hadoop]$
yarn的集羣狀況查看:
[hadoop@centos-aaron-ha-03 ~]$ yarn rmadmin -getServiceState rm1 active [hadoop@centos-aaron-ha-04 ~]$ yarn rmadmin -getServiceState rm2 standby
hdfs的集羣狀況查看
5、最後總結
本次搭建集羣出現了一些問題,例如,集羣搭建後,其它一切正常;但沒法執行mapreduce程序。該問題的解決須要根據mrapplication容器日誌來查看,博主這是由於mapred-site.xml裏面的hadoop的class路徑配置和yarn-site.xml裏面的webapp端口配置致使的。小夥伴們遇到問題須要根據yarn的界面日誌來定位。
最後寄語,以上是博主本次文章的所有內容,若是你們以爲博主的文章還不錯,請點贊;若是您對博主其它服務器大數據技術或者博主本人感興趣,請關注博主博客,而且歡迎隨時跟博主溝通交流。