原文地址html
本文介紹如何用帶 Apache Mahout 的 MapR Sandbox for Hadoop 和 Elasticsearch 搭建推薦引擎,只須要不多的代碼。python
This tutorial will give step-by-step instructions on how to:git
遷移到:http://www.bdata-cap.com/newsinfo/1712675.html
該文章運行在 MapReduce Sandbox。還要求在 Sandbox 上安裝 Elasticsearch 和 Mahout。github
在 Elasticsearch 中,默認狀況下,文檔的全部字段都會被索引。最簡單的文檔是隻有一級 JSON 結構。文檔包含在索引中,文檔中的類型告訴 Elasticsearch 如何解釋文檔中的字段。算法
你能夠把 Elasticsearch 的索引看作是關係型數據庫中的數據庫實例,而類型看作是數據庫表,字段看作表定義(可是這個字段,在 Elasticsearch 中的意義更普遍),文檔看作是表的某行記錄。數據庫
針對本例,文檔類型是 film。並具備以下字段:電影ID(id)、標題(title)、上映時間(year)、電影類型/標籤(genre,基因)、指示(indicators)、indicators數組的數量(numFields):apache
{
"id": "65006",
"title": "Impulse",
"year": "2008",
"genre": ["Mystery","Thriller"],
"indicators": ["154","272",」154","308", "535", "583", "593", "668", "670", "680", "702", "745"],
"numFields": 12
}
經過 9200 端口訪問 Elasticsearch RESTful API 與其通訊,或者命令行用 curl 命令。參看 Elasticsearch REST interface 和 Elasticsearch 101 tutorial。json
curl -X<VERB> 'http://<HOST>/<PATH>?<QUERY_STRING>' -d '<BODY>'
使用 Elasticsearch's REST API 的 put mapping 命令能夠定義文檔的類型。下面的請求在 bigmovie 索引中建立名爲 film 的映射(mapping)。該映射定義一個類型爲 integer 類型的 numFields 字段。默認狀況,全部字段都被存儲並索引,整型也如此。api
curl -XPUT 'http://localhost:9200/bigmovie' -d '
{
"mappings": {
"film" : {
"properties" : {
"numFields" : { "type" : "integer" }
}
}
}
}'
電影信息包含在 movies.dat 文件中。文件的每行表示一部電影,字段的含義以下所示:數組
MovieID::Title::Genres
例如:
65006::Impulse (2008)::Mystery|Thriller
圖 1 電影《衝動(Impulse)》(2008)、類型「懸疑/驚悚」
下面 Python 腳本把 movies.dat 文件中的數據轉換成 JSON 格式,以便導入 Elasticsearch:
import re
import json
count=0
with open('movies.dat','rb') as csv_file:
content = csv_file.readlines()
for line in content:
fixed = re.sub("::", "\t", line).rstrip().split("\t")
if len(fixed)==3:
title = re.sub(" \(.*\)$", "", re.sub('"','', fixed[1]))
genre = fixed[2].split('|')
print '{ "create" : { "_index" : "bigmovie", "_type" : "film",
"_id" : "%s" } }' % fixed[0]
print '{ "id": "%s", "title" : "%s", "year":"%s" , "genre":%s }'
% (fixed[0],title, fixed[1][-5:-1], json.dumps(genre))
運行該 Python 文件,轉換結果輸出到 index.json:
$ python index.py > index.json
將產生以下 Elasticsearch 須要的格式:
{ "create" : { "_index" : "bigmovie", "_type" : "film", "_id" : "1" } }
{ "id": "1", "title" : "Toy Story", "year":"1995" , "genre":["Adventure", "Animation", "Children", "Comedy", "Fantasy"] }
{ "create" : { "_index" : "bigmovie", "_type" : "film", "_id" : "2" } }
{ "id": "2", "title" : "Jumanji", "year":"1995" , "genre":["Adventure", "Children", "Fantasy"] }
文件中的每行建立索引和類型,並添加電影信息。這是利用 Elasticsearch 批量導入數據。
Elasticsearch 批量 API 能夠執行對索引的操做,用同一個 API,不一樣的 http 請求(如 get、put、post、delete)。下面命令讓 Elasticsearch 批量加載 index.json 文中的內容:
curl -s -XPOST localhost:9200/_bulk --data-binary @index.json; echo
加載電影信息後,你就能夠利用 REST API 進行查詢了。你也可使用 Chrome 的 Elasticsearch 插件——Sense 進行操做(Kibana 4 提供的一個插件)。示例以下所示:
下面是檢索 id 爲 1237的電影:
評分包含在 ratings.dat 文件中。該文件每行表示某個用戶對某個電影的評分,格式以下所示:
UserID::MovieID::Rating::Timestamp
例如:
71567::2294::5::912577968
71567::2338::2::912578016
ratings.data 文件用 "::" 作分隔符,轉換成 tab 後 Mahout 才能使用。能夠用 sed 命令把 :: 替換成 tab:
sed -i 's/::/\t/g' ratings.dat
該命令打開文件,把"::" 替換成"\t" 後,從新保存。Updates are only supported with MapR NFS and thus this command probably won't work on other NFS-on-Hadoop implementations. MapR Direct Access NFS allows files to be modified (supports random reads and writes) and accessed via mounting the Hadoop cluster over NFS.
sed 命令會產生以下格式的內容,該格式能夠做爲 Mahout 的輸入:
71567 2294 5 912580553
71567 2338 2 912580553
通常格式爲:item1 item2 rating timestamp,即「物品1 物品2 評分」,本例不使用 timestamp。
啓動 Mahout 物品類似度(itemsimilarity)做業,命令以下所示:
mahout itemsimilarity \
--input /user/user01/mlinput/ratings.dat \
--output /user/user01/mloutput \
--similarityClassname SIMILARITY_LOGLIKELIHOOD \
--booleanData TRUE \
--tempDir /user/user01/temp
The argument 「-s SIMILARITY_LOGLIKELIHOOD」 tells the recommender to use the Log Likelihood Ratio (LLR) method for determining which items co-occur anomalously often and thus which co-occurrences can be used as indicators of preference. 類似度默認是 0.9;this can be adjusted based on the use case with the --threshold parameter, which will discard pairs with lower similarity (the default is a fine choice). Mahout 經過啓動不少 Hadoop MapReduce 做業計算推薦,最後將產生輸出文件,該文件位於 /user/user01/mloutput
目錄。輸出文件格式以下所示:
64957 64997 0.9604835425701245 64957 65126 0.919355104432831 64957 65133 0.9580439772229588
通常格式爲:item1id item2id similarity,即「物品1 物品2 類似度」。
下一步,咱們從上面的輸出文件添加 indicators 到 Elasticsearch 的 film 文檔。例如,把電影的 indicators 放到 indicators 字段:
{
"id": "65006",
"title": "Impulse",
"year": "2008",
"genre": ["Mystery","Thriller"],
"indicators": ["1076", "1936", "2057", "2204"],
"numFields": 4
}
左面的表顯示文檔中包含 indicator 的內容,右邊的表顯示哪些文檔包含某個 indicator:
圖 2 文檔與 indicator
若是想要檢索 indicator 爲 1237 和 551 的電影,那麼本例將返回 id 爲 8298 的文檔(電影)。若是檢索 1237 或 551,那麼將返回 id 爲 829八、3 和 64418 的電影。
下面腳本將讀取 Mahout 的輸出文件 part-r-00000,爲每部電影建立 indicator 數組,而後輸出 JSON 文件,用該文件更新 Elasticsearch bigmovie 索引的 film 類型的 indicator 字段。
import fileinput
from string import join
import json
import csv
import json
### read the output from MAHOUT and collect into hash ###
with open('/user/user01/mloutput/part-r-00000','rb') as csv_file:
csv_reader = csv.reader(csv_file,delimiter='\t')
old_id = ""
indicators = []
update = {"update" : {"_id":""}}
doc = {"doc" : {"indicators":[], "numFields":0}}
for row in csv_reader:
id = row[0]
if (id != old_id and old_id != ""):
update["update"]["_id"] = old_id
doc["doc"]["indicators"] = indicators
doc["doc"]["numFields"] = len(indicators)
print(json.dumps(update))
print(json.dumps(doc))
indicators = [row[1]]
else:
indicators.append(row[1])
old_id = id
下面命令會執行 update.py 的 Python 腳本,並輸出 update.json:
$ python update.py > update.json
上面 Python 腳本將建立以下內容的文件:
{"update": {"_id": "1"}}
{"doc": {"indicators": ["75", "118", "494", "512", "609", "626", "631", "634", "648", "711", "761", "810", "837", "881", "910", "1022", "1030", "1064", "1301", "1373", "1390", "1588", "1806", "2053", "2083", "2090", "2096", "2102", "2286", "2375", "2378", "2641", "2857", "2947", "3147", "3429", "3438", "3440", "3471", "3483", "3712", "3799", "3836", "4016", "4149", "4544", "4545", "4720", "4732", "4901", "5004", "5159", "5309", "5313", "5323", "5419", "5574", "5803", "5841", "5902", "5940", "6156", "6208", "6250", "6383", "6618", "6713", "6889", "6890", "6909", "6944", "7046", "7099", "7281", "7367", "7374", "7439", "7451", "7980", "8387", "8666", "8780", "8819", "8875", "8974", "9009", "25947", "27721", "31660", "32300", "33646", "40339", "42725", "45517", "46322", "46559", "46972", "47384", "48150", "49272", "55668", "63808"], "numFields": 102}}
{"update": {"_id": "2"}}
{"doc": {"indicators": ["15", "62", "153", "163", "181", "231", "239", "280", "333", "355", "374", "436", "473", "485", "489", "502", "505", "544", "546", "742", "829", "1021", "1474", "1562", "1588", "1590", "1713", "1920", "1967", "2002", "2012", "2045", "2115", "2116", "2139", "2143", "2162", "2296", "2338", "2399", "2408", "2447", "2616", "2793", "2798", "2822", "3157", "3243", "3327", "3438", "3440", "3477", "3591", "3614", "3668", "3802", "3869", "3968", "3972", "4090", "4103", "4247", "4370", "4467", "4677", "4686", "4846", "4967", "4980", "5283", "5313", "5810", "5843", "5970", "6095", "6383", "6385", "6550", "6764", "6863", "6881", "6888", "6952", "7317", "8424", "8536", "8633", "8641", "26870", "27772", "31658", "32954", "33004", "34334", "34437", "39419", "40278", "42011", "45210", "45447", "45720", "48142", "50347", "53464", "55553", "57528"], "numFields": 106}}
在命令行,用 curl 命令調用 Elasticsearch REST bulk 請求,把該文件 update.json 做爲輸入,就能夠更新 indicator 字段:
$ curl -s -XPOST localhost:9200/bigmovie/film/_bulk --data-binary @update.json; echo
如今,你就能夠檢索 film 的 indicator 字段進行查詢並推薦。例如,某人喜歡電影 1237 和 551,你想推薦相似的電影,能夠執行以下 Elasticsearch 查詢得到推薦,將返回indicator 數組爲 1237 和 551 的電影,即 1237=Seventh Seal(第七封印),551=Nightmare Before Christmas(聖誕夜驚魂):
curl 'http://localhost:9200/bigmovie/film/_search?pretty' -d '
{
"query": {
"function_score": {
"query": {
"bool": {
"must": [ { "match": { "indicators":"1237 551"} } ],
"must_not": [ { "ids": { "values": ["1237", "551"] } } ]
}
},
"functions":[ {"random_score": {"seed":"48" } } ],
"score_mode":"sum"
}
},
"fields":["_id","title","genre"],
"size":"8"
}'
上面查詢 indicator 爲 1237 或 551,而且不是 1237 或 551 的電影。下面示例使用 Sense 插件進行查詢,右邊是檢索結果,推薦結果是 「A Man Named Pearl(這個是紀錄片)」 和 「Used People(寡婦三弄)」。
全文檢索引擎根據相關度排序,Elasticsearch 用 _score 字段表示文檔的相關度分數(relevance score)。function_score 容許你查詢時修改該分數。random_score 用一個種子變量使用散列生成分數。Elasticsearch 查詢以下所示,random_score 函數用於把變量添加到檢索結果,以便完成 dithering:
"query": {
"function_score": {
"query": {
"bool": {
"must": [ { "match": { "indicators":"1237 551"} } ],
"must_not": [ { "ids": { "values": ["1237", "551"] } } ]
}
},
"functions":[ {"random_score": {"seed":"48" } } ],
"score_mode":"sum"
}
}
相關性抖動(dithering)有意地包含排名靠,但相關性較低的結果,以便拓展訓練數據,提供給推薦引擎。若是沒有 dithering,那麼明天的訓練數據僅僅是教模型今天已經知道的事情。增長 dithering, 會幫助拓展推薦模型。若是模型給出的答案接近優秀的,那麼 dithering 能夠幫助找到正確答案。有效的 dithering 會減小今天的準確性,而改進明天的訓練數據(和將來的性能,算法的準確性也屬於性能的範疇),換句話說,爲了讓未來的推薦準確,須要減小過去對未來的影響。
We showed in this tutorial how to use Apache Mahout and Elasticsearch with the MapR Sandbox to build a basic recommendation engine. You can go beyond a basic recommender and get even better results with a few simple additions to the design to add cross recommendation of items, which leverages a variety of interactions and items for making recommendations. You can find more information about these technologies here:
若想學習更多關於推薦引擎的組件和邏輯,參看 "An Inside Look at the Components of a Recommendation Engine",該文章詳細描述了推薦引擎的架構、Mahout 協同過濾(collaborative filtering)和 Elasticsearch 檢索引擎。
更多關於推薦引擎、機器學習和 Elasticsearch 的資源,以下所示:
Tutorial Category Reference: