細推物理須行樂,何用浮名絆此身java
SharedPreferences(簡稱SP)是Android輕量級的鍵值對存儲方式。對於開發者來講它的使用很是的方便,可是也是一種被你們詬病不少的一種存儲方式。有所謂的七宗罪:android
帶着這些結論咱們一步步的從代碼中找出它的依據,固然了,本文的內容不止如此,還包裹整個SharedPreferences的運行機理等,固然這一切都是我我的的理解,中間難免有錯誤的地方,也歡迎你們指證。c++
SharedPreferences的建立能夠有多種方式:git
# ContextWrapper.java
public SharedPreferences getSharedPreferences(String name, int mode) {
return mBase.getSharedPreferences(name, mode);
}
複製代碼
由於咱們的Activity,Service,Application都會繼承ContextWrapper,因此它們也能夠獲取到SharedPreferencesgithub
# PreferenceManager.java
public static SharedPreferences getDefaultSharedPreferences(Context context) {
return context.getSharedPreferences(getDefaultSharedPreferencesName(context),
getDefaultSharedPreferencesMode());
}
複製代碼
經過PreferenceManager中靜態方法獲取,固然根據需求不通,PreferenceManager中還提供了別的方法,你們能夠去查閱。緩存
雖然上面獲取SharedPreferences的方式不少,可是他們最終都會調用到ContextImpl.getSharedPreferences的方法,而且 SharedPreferences真正的建立也是在這裏,關於ContextImpl和Activity、Service等的關係,我會另外寫篇文章介紹,其實使用的是裝飾器模式.安全
# ContextImpl.java
public SharedPreferences getSharedPreferences(String name, int mode) {
// At least one application in the world actually passes in a null
// name. This happened to work because when we generated the file name
// we would stringify it to "null.xml". Nice.
if (mPackageInfo.getApplicationInfo().targetSdkVersion <
Build.VERSION_CODES.KITKAT) {
if (name == null) {
name = "null";
}
}
File file;
synchronized (ContextImpl.class) {
if (mSharedPrefsPaths == null) {
mSharedPrefsPaths = new ArrayMap<>();
}
//從mSharedPrefsPaths緩存中查詢文件
file = mSharedPrefsPaths.get(name);
if (file == null) {
//若是文件不存在,根據name建立 [見2.3.2]
file = getSharedPreferencesPath(name);
mSharedPrefsPaths.put(name, file);
}
}
//[見2.3.3]
return getSharedPreferences(file, mode);
}
複製代碼
# ContextImpl.java
@Override
public File getSharedPreferencesPath(String name) {
return makeFilename(getPreferencesDir(), name + ".xml");
}
//建立目錄/data/data/package name/shared_prefs/
private File getPreferencesDir() {
synchronized (mSync) {
if (mPreferencesDir == null) {
mPreferencesDir = new File(getDataDir(), "shared_prefs");
}
return ensurePrivateDirExists(mPreferencesDir);
}
}
複製代碼
# ContextImpl.java
@Override
public SharedPreferences getSharedPreferences(File file, int mode) {
//[見2.3.4]
checkMode(mode);
if (getApplicationInfo().targetSdkVersion >= android.os.Build.VERSION_CODES.O) {
if (isCredentialProtectedStorage()
&& !getSystemService(StorageManager.class).isUserKeyUnlocked(
UserHandle.myUserId())
&& !isBuggy()) {
throw new IllegalStateException("SharedPreferences in credential encrypted "
+ "storage are not available until after user is unlocked");
}
}
SharedPreferencesImpl sp;
synchronized (ContextImpl.class) {
 //獲取SharedPreferencesImpl的緩存集合[見2.3.5]
final ArrayMap<File, SharedPreferencesImpl> cache = getSharedPreferencesCacheLocked();
sp = cache.get(file);
if (sp == null) {
//若是緩存中沒有咱們就會建立SharedPreferencesImpl實例[見2.3.6]
sp = new SharedPreferencesImpl(file, mode);
cache.put(file, sp);
return sp;
}
}
//指定多進程模式, 則當文件被其餘進程改變時,則會從新加載
if ((mode & Context.MODE_MULTI_PROCESS) != 0 ||
getApplicationInfo().targetSdkVersion < android.os.Build.VERSION_CODES.HONEYCOMB) {
// If somebody else (some other process) changed the prefs
// file behind our back, we reload it. This has been the
// historical (if undocumented) behavior.
sp.startReloadIfChangedUnexpectedly();[見2.3.7]
}
return sp;
}
複製代碼
上面的代碼有個MODE_MULTI_PROCESS模式,也就是咱們若是要在多進程時使用SharedPreferences時須要指定這個mode,可是這種方式google是不推薦使用的,由於在線上大概有萬分之一的機率形成 SharedPreferences的數據所有丟失,由於它沒有使用任何進程鎖的操做,這時從新加載可一次文件,具體見startReloadIfChangedUnexpectedly方法。bash
# ContextImpl.java
private void checkMode(int mode) {
if (getApplicationInfo().targetSdkVersion >= Build.VERSION_CODES.N) {
if ((mode & MODE_WORLD_READABLE) != 0) {
throw new SecurityException("MODE_WORLD_READABLE no longer supported");
}
if ((mode & MODE_WORLD_WRITEABLE) != 0) {
throw new SecurityException("MODE_WORLD_WRITEABLE no longer supported");
}
}
}
複製代碼
在Android24以後的版本 SharedPreferences的mode不能再使用MODE_WORLD_READABLE和MODE_WORLD_WRITEABLE。併發
# ContextImpl.java
private ArrayMap<File, SharedPreferencesImpl> getSharedPreferencesCacheLocked() {
if (sSharedPrefsCache == null) {
sSharedPrefsCache = new ArrayMap<>();
}
final String packageName = getPackageName();
ArrayMap<File, SharedPreferencesImpl> packagePrefs = sSharedPrefsCache.get(packageName);
if (packagePrefs == null) {
packagePrefs = new ArrayMap<>();
sSharedPrefsCache.put(packageName, packagePrefs);
}
return packagePrefs;
}
複製代碼
經過上面的代碼,咱們發現ContextImpl中維護了一個存儲SharedPreferencesImpl map的map緩存 sSharedPrefsCache,而且他是靜態的,也就是說整個應用獨此一份,而它的鍵是應用的包名。app
前面講了那麼一大堆大可能是關於SharedPreferences的各類緩存流程的,以及各類前期的準備,走到這裏才真正把SharedPreferences建立出來,因爲SharedPreferences是個接口,因此它的所有實現都是由 SharedPreferencesImpl來完成的。
# SharedPreferencesImpl.java
SharedPreferencesImpl(File file, int mode) {
mFile = file;
mBackupFile = makeBackupFile(file);
mMode = mode;
mLoaded = false;
mMap = null;
//[見2.3.8]
startLoadFromDisk();
}
複製代碼
當設置MODE_MULTI_PROCESS模式, 則每次getSharedPreferences過程, 會檢查SP文件上次修改時間和文件大小, 一旦全部修改則會從新加載文件.
# SharedPreferencesImpl.java
void startReloadIfChangedUnexpectedly() {
synchronized (mLock) {
// TODO: wait for any pending writes to disk?
if (!hasFileChangedUnexpectedly()) {
return;
}
startLoadFromDisk();
}
}
// Has the file changed out from under us? i.e. writes that
// we didn't instigate. private boolean hasFileChangedUnexpectedly() { synchronized (mLock) { if (mDiskWritesInFlight > 0) { // If we know we caused it, it's not unexpected.
if (DEBUG) Log.d(TAG, "disk write in flight, not unexpected.");
return false;
}
}
final StructStat stat;
try {
/*
* Metadata operations don't usually count as a block guard * violation, but we explicitly want this one. */ BlockGuard.getThreadPolicy().onReadFromDisk(); stat = Os.stat(mFile.getPath()); } catch (ErrnoException e) { return true; } synchronized (mLock) { return mStatTimestamp != stat.st_mtime || mStatSize != stat.st_size; } } 複製代碼
這個方法的主要目的就是加載xml文件到mFile對象中,同時爲了保證這個加載過程爲異步操做,這個地方使用了線程。另外當xml文件未加載時,SharedPreferences的getString(),edit()等方法都會處於阻塞狀態(阻塞和掛起的區別...),直到mLoaded的狀態變爲true,後面的分析會驗證這一點。
private void startLoadFromDisk() {
synchronized (mLock) {
mLoaded = false;
}
new Thread("SharedPreferencesImpl-load") {
public void run() {
//使用線程去加載xml
loadFromDisk();
}
}.start();
}
private void loadFromDisk() {
synchronized (mLock) {
if (mLoaded) {
return;
}
//若是容災文件存在,則使用容災文件
if (mBackupFile.exists()) {
mFile.delete();
mBackupFile.renameTo(mFile);
}
}
// Debugging
if (mFile.exists() && !mFile.canRead()) {
Log.w(TAG, "Attempt to read preferences file " + mFile + " without permission");
}
Map map = null;
StructStat stat = null;
try {
stat = Os.stat(mFile.getPath());
if (mFile.canRead()) {
BufferedInputStream str = null;
try {
str = new BufferedInputStream(
new FileInputStream(mFile), 16*1024);
//從xml中全量讀取內容,保存在內存中
map = XmlUtils.readMapXml(str);
} catch (Exception e) {
Log.w(TAG, "Cannot read " + mFile.getAbsolutePath(), e);
} finally {
IoUtils.closeQuietly(str);
}
}
} catch (ErrnoException e) {
/* ignore */
}
synchronized (mLock) {
mLoaded = true;
if (map != null) {
mMap = map;
mStatTimestamp = stat.st_mtime;
mStatSize = stat.st_size;
} else {
mMap = new HashMap<>();
}
mLock.notifyAll();
}
}
複製代碼
這樣SharedPreference的實例建立已經完成了,而且咱們也發現SharedPreference將從文件中讀取的數據保存在了mMap的全局變量中,而後後面的讀取操做其實都只是在mMap中拿數據了,下面分析獲取數據和添加數據的流程。
前面的章節已經成功的建立了SharedPreferences實例,下面看看怎麼使用它來獲取數據,下面以getString爲例分析。
@Nullable
public String getString(String key, @Nullable String defValue) {
synchronized (mLock) {
//阻塞判斷,須要等到數據從xml中加載到內存中,纔會繼續執行[見3.2]
awaitLoadedLocked();
//直接從內存中獲取數據
String v = (String)mMap.get(key);
return v != null ? v : defValue;
}
}
複製代碼
從這裏咱們能夠驗證當咱們在上文中的結論,那就是在 SharedPreferences被建立後,咱們全部的讀取數據都是在內存中獲取的,可是這裏可能就有個疑問了,加入如今咱們put一條數據,是否要從新加載一次文件呢,其實在單進程中是不須要的,可是在多進程中就可能須要了。下面咱們繼續帶着這些疑惑去尋找答案。
private void awaitLoadedLocked() {
if (!mLoaded) {
// Raise an explicit StrictMode onReadFromDisk for this
// thread, since the real read will be in a different
// thread and otherwise ignored by StrictMode.
//[見參考文檔]
BlockGuard.getThreadPolicy().onReadFromDisk();
}
while (!mLoaded) {
try {
mLock.wait();
} catch (InterruptedException unused) {
}
}
}
從上面的操做能夠看出當mLoaded爲false時,也就是內容沒有從xml文件中加載到內存時,該方法一直會處於阻塞狀態。
複製代碼
SharedPreferences中還有個Editor和EditorImpl,它們的做用是添加數據和修改數據。可是這裏要注意,咱們對Editor作操做,其實只是把數據保存在Editor的一個成員變量中,真正把數據更新到SharedPreferencesImpl而且寫入文件是在Editor的commit或者apply方法被調用以後.
# SharedPreferencesImpl.java
public final class EditorImpl implements Editor {
private final Object mLock = new Object();
@GuardedBy("mLock")
private final Map<String, Object> mModified = Maps.newHashMap();
@GuardedBy("mLock")
private boolean mClear = false;
public Editor putString(String key, @Nullable String value) {
synchronized (mLock) {
mModified.put(key, value);
return this;
}
}
public Editor putStringSet(String key, @Nullable Set<String> values) {
synchronized (mLock) {
mModified.put(key,
(values == null) ? null : new HashSet<String>(values));
return this;
}
}
public Editor putInt(String key, int value) {
synchronized (mLock) {
mModified.put(key, value);
return this;
}
}
public Editor putLong(String key, long value) {
synchronized (mLock) {
mModified.put(key, value);
return this;
}
}
public Editor putFloat(String key, float value) {
synchronized (mLock) {
mModified.put(key, value);
return this;
}
}
public Editor putBoolean(String key, boolean value) {
synchronized (mLock) {
mModified.put(key, value);
return this;
}
}
public Editor remove(String key) {
synchronized (mLock) {
mModified.put(key, this);
return this;
}
}
public Editor clear() {
synchronized (mLock) {
mClear = true;
return this;
}
}
}
複製代碼
從Editor的put操做來看,它是把數據添加到mModified這個成員變量中,並未寫入文件。而寫入的操做是在commit和apply中執行的,下面就解析 SharedPreferences中兩個核心的方法commit和apply
commit和apply是Editor中的方法,實如今EditorImpl中,那麼他們兩有什麼區別,又是怎麼實現的呢?首先,他們兩最大的區別是commit是一個同步方法,它有一個boolean類型的返回值,而apply是一個異步方法,沒有返回值。簡單理解就是,commit須要等待提交結果,而apply不須要。因此commit以犧牲必定的性能而換來準確性的提升。另一點就是對於apply方法,官方的註釋告訴咱們不用擔憂Android組件的生命週期會對它形成的影響,底層的框架幫咱們作了處理,可是真的是這樣的嗎?[見4.2.6]分解。下面看具體的分析。
# SharedPreferencesImpl.java
public boolean commit() {
long startTime = 0;
if (DEBUG) {
startTime = System.currentTimeMillis();
}
//將數據保存在內存中[見4.2.3]
MemoryCommitResult mcr = commitToMemory();
//同步將數據寫到硬盤中[見4.2.4]
SharedPreferencesImpl.this.enqueueDiskWrite(
mcr, null /* sync write on this thread okay */);
try {
//等待寫入操做的完成
mcr.writtenToDiskLatch.await();
} catch (InterruptedException e) {
return false;
} finally {
if (DEBUG) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " committed after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
//用於onSharedPreferenceChanged的回調提醒
notifyListeners(mcr);
return mcr.writeToDiskResult;
}
複製代碼
在commit中首先調用commitToMemory將數據保存在內存中,而後會執行寫入操做,而且讓當前commit所在的線程處於阻塞狀態。當寫入完成後會經過onSharedPreferenceChanged提醒數據發生的變化。這個過程當中有個注意的地方, mcr.writtenToDiskLatch.await(),若是非併發調用commit方法,這個操做是不須要的,可是若是併發commit時,就必須有mcr.writtenToDiskLatch.await()操做了,由於寫入操做可能會被放到別的子線程中執行.而後就是notifyListeners()方法,當咱們寫入的數據發生變化後給咱們的回調,這個回調咱們能夠經過註冊下面的代碼拿到。
sp.registerOnSharedPreferenceChangeListener { sharedPreferences, key -> }
複製代碼
# SharedPreferencesImpl.java
public void apply() {
final long startTime = System.currentTimeMillis();
//將數據保存在內存中[見4.2.3]
final MemoryCommitResult mcr = commitToMemory();
final Runnable awaitCommit = new Runnable() {
public void run() {
try {
mcr.writtenToDiskLatch.await();
} catch (InterruptedException ignored) {
}
if (DEBUG && mcr.wasWritten) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " applied after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
};
QueuedWork.addFinisher(awaitCommit);
Runnable postWriteRunnable = new Runnable() {
public void run() {
awaitCommit.run();
QueuedWork.removeFinisher(awaitCommit);
}
};
 // 執行文件寫入操做,傳入的 postWriteRunnable 參數不爲 null,因此在
// enqueueDiskWrite 方法中會開啓子線程異步將數據寫入文件
SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
// Okay to notify the listeners before it's hit disk // because the listeners should always get the same // SharedPreferences instance back, which has the // changes reflected in memory. notifyListeners(mcr); } 複製代碼
apply方法的流程和commit實際上是差很少,可是apply的寫入操做會被放在一個單獨的線程中執行,而且不會阻塞當前apply所在的線程。當時有中特殊的請求是會阻塞的,那就是在Activity的onStop方法被調用,而且apply的寫入操做還未完成時,會阻塞主線程,更詳情的分析[見4.2.6]
# SharedPreferencesImpl.java
private MemoryCommitResult commitToMemory() {
long memoryStateGeneration;
List<String> keysModified = null;
Set<OnSharedPreferenceChangeListener> listeners = null;
Map<String, Object> mapToWriteToDisk;
synchronized (SharedPreferencesImpl.this.mLock) {
// We optimistically don't make a deep copy until // a memory commit comes in when we're already
// writing to disk.
if (mDiskWritesInFlight > 0) {
// We can't modify our mMap as a currently // in-flight write owns it. Clone it before // modifying it. // noinspection unchecked mMap = new HashMap<String, Object>(mMap); } mapToWriteToDisk = mMap; mDiskWritesInFlight++; boolean hasListeners = mListeners.size() > 0; if (hasListeners) { keysModified = new ArrayList<String>(); listeners = new HashSet<OnSharedPreferenceChangeListener>(mListeners.keySet()); } synchronized (mLock) { boolean changesMade = false; if (mClear) { if (!mMap.isEmpty()) { changesMade = true; mMap.clear(); } mClear = false; } //mModified 保存的寫記錄同步到內存中的 mMap 中 for (Map.Entry<String, Object> e : mModified.entrySet()) { String k = e.getKey(); Object v = e.getValue(); // "this" is the magic value for a removal mutation. In addition, // setting a value to "null" for a given key is specified to be // equivalent to calling remove on that key. if (v == this || v == null) { if (!mMap.containsKey(k)) { continue; } mMap.remove(k); } else { if (mMap.containsKey(k)) { Object existingValue = mMap.get(k); if (existingValue != null && existingValue.equals(v)) { continue; } } mMap.put(k, v); } changesMade = true; if (hasListeners) { keysModified.add(k); } } // 將 mModified 同步到 mMap 以後,清空 mModified mModified.clear(); if (changesMade) { mCurrentMemoryStateGeneration++; } memoryStateGeneration = mCurrentMemoryStateGeneration; } } return new MemoryCommitResult(memoryStateGeneration, keysModified, listeners, mapToWriteToDisk); } 複製代碼
經過上面的註釋和代碼,咱們瞭解到每次有寫操做的時候,都會同步mMap,這樣咱們就不須要每次在讀取的時候從新load文件了,可是這個結論在多進程中不適用。另外須要關注的是mDiskWritesInFlight這個變量,當mDiskWritesInFlight大於0時,會拷貝一份mMap,把它存到MemoryCommitResult類的成員mapToWriteToDisk中,而後再把mDiskWritesInFlight加1。在把mapToWriteDisk寫入到文件後,mDiskWritesInFlight會減1,因此mDiskWritesInFlight大於0說明以前已經有調用過commitToMemory了,而且尚未把map寫入到文件,這樣先後兩次要準備寫入文件的mapToWriteToDisk是兩個不一樣的內存對象,後一次調用commitToMemory時,再更新mMap中的值時不會影響前一次的mapToWriteToDisk的寫入文件
# SharedPreferencesImpl.java
private void enqueueDiskWrite(final MemoryCommitResult mcr,
final Runnable postWriteRunnable) {
final boolean isFromSyncCommit = (postWriteRunnable == null);
// 建立Runnable,負責將數據接入文件
final Runnable writeToDiskRunnable = new Runnable() {
public void run() {
synchronized (mWritingToDiskLock) {
//寫入文件操做[見4.2.5]
writeToFile(mcr, isFromSyncCommit);
}
synchronized (mLock) {
// 寫入文件後將mDiskWritesInFlight值減一
mDiskWritesInFlight--;
}
if (postWriteRunnable != null) {
postWriteRunnable.run();
}
}
};
// Typical #commit() path with fewer allocations, doing a write on
// the current thread.
if (isFromSyncCommit) {
boolean wasEmpty = false;
synchronized (mLock) {
wasEmpty = mDiskWritesInFlight == 1;
}
if (wasEmpty) {
// 當只有一個 commit 請求未處理,那麼無需開啓線程進行處理,直接在本線程執行 //writeToDiskRunnable 便可
writeToDiskRunnable.run();
return;
}
}
//單線程執行寫入操做
QueuedWork.queue(writeToDiskRunnable, !isFromSyncCommit);
}
複製代碼
從這裏咱們能夠得出commit操做,若是隻有一次操做的時候,只會在當前線程中執行,可是若是併發commit時,剩餘的writeToDiskRunnable則會被放在單獨的線程中執行,而第一次commit所在的線程則進入阻塞狀態。它須要等後面的commit都成功後才能算真正的成功,而返回的狀態也是最後一次commit的狀態。
終於,迎來了最後真正的寫操做,包括在寫入成功的時候將容災文件刪除,或者在寫入失敗時將半成品文件刪除等,最後將寫結果保存在MemoryCommitResult中。
# SharedPreferencesImpl.java
// Note: must hold mWritingToDiskLock
private void writeToFile(MemoryCommitResult mcr, boolean isFromSyncCommit) {
long startTime = 0;
long existsTime = 0;
long backupExistsTime = 0;
long outputStreamCreateTime = 0;
long writeTime = 0;
long fsyncTime = 0;
long setPermTime = 0;
long fstatTime = 0;
long deleteTime = 0;
if (DEBUG) {
startTime = System.currentTimeMillis();
}
boolean fileExists = mFile.exists();
if (DEBUG) {
existsTime = System.currentTimeMillis();
// Might not be set, hence init them to a default value
backupExistsTime = existsTime;
}
// Rename the current file so it may be used as a backup during the next read
if (fileExists) {
boolean needsWrite = false;
// Only need to write if the disk state is older than this commit
if (mDiskStateGeneration < mcr.memoryStateGeneration) {
if (isFromSyncCommit) {
needsWrite = true;
} else {
synchronized (mLock) {
// No need to persist intermediate states. Just wait for the latest state to
// be persisted.
if (mCurrentMemoryStateGeneration == mcr.memoryStateGeneration) {
needsWrite = true;
}
}
}
}
if (!needsWrite) {
mcr.setDiskWriteResult(false, true);
return;
}
boolean backupFileExists = mBackupFile.exists();
if (DEBUG) {
backupExistsTime = System.currentTimeMillis();
}
if (!backupFileExists) {
if (!mFile.renameTo(mBackupFile)) {
Log.e(TAG, "Couldn't rename file " + mFile
+ " to backup file " + mBackupFile);
mcr.setDiskWriteResult(false, false);
return;
}
} else {
mFile.delete();
}
}
// Attempt to write the file, delete the backup and return true as atomically as
// possible. If any exception occurs, delete the new file; next time we will restore
// from the backup.
try {
FileOutputStream str = createFileOutputStream(mFile);
if (DEBUG) {
outputStreamCreateTime = System.currentTimeMillis();
}
if (str == null) {
mcr.setDiskWriteResult(false, false);
return;
}
XmlUtils.writeMapXml(mcr.mapToWriteToDisk, str);
writeTime = System.currentTimeMillis();
FileUtils.sync(str);
fsyncTime = System.currentTimeMillis();
str.close();
ContextImpl.setFilePermissionsFromMode(mFile.getPath(), mMode, 0);
if (DEBUG) {
setPermTime = System.currentTimeMillis();
}
try {
final StructStat stat = Os.stat(mFile.getPath());
synchronized (mLock) {
mStatTimestamp = stat.st_mtime;
mStatSize = stat.st_size;
}
} catch (ErrnoException e) {
// Do nothing
}
if (DEBUG) {
fstatTime = System.currentTimeMillis();
}
// Writing was successful, delete the backup file if there is one.
mBackupFile.delete();
if (DEBUG) {
deleteTime = System.currentTimeMillis();
}
mDiskStateGeneration = mcr.memoryStateGeneration;
mcr.setDiskWriteResult(true, true);
if (DEBUG) {
Log.d(TAG, "write: " + (existsTime - startTime) + "/"
+ (backupExistsTime - startTime) + "/"
+ (outputStreamCreateTime - startTime) + "/"
+ (writeTime - startTime) + "/"
+ (fsyncTime - startTime) + "/"
+ (setPermTime - startTime) + "/"
+ (fstatTime - startTime) + "/"
+ (deleteTime - startTime));
}
long fsyncDuration = fsyncTime - writeTime;
mSyncTimes.add(Long.valueOf(fsyncDuration).intValue());
mNumSync++;
if (DEBUG || mNumSync % 1024 == 0 || fsyncDuration > MAX_FSYNC_DURATION_MILLIS) {
mSyncTimes.log(TAG, "Time required to fsync " + mFile + ": ");
}
return;
} catch (XmlPullParserException e) {
Log.w(TAG, "writeToFile: Got exception:", e);
} catch (IOException e) {
Log.w(TAG, "writeToFile: Got exception:", e);
}
// Clean up an unsuccessfully written file
if (mFile.exists()) {
if (!mFile.delete()) {
Log.e(TAG, "Couldn't clean up partially-written file " + mFile);
}
}
mcr.setDiskWriteResult(false, false);
}
複製代碼
還記得在介紹apply時,咱們瞭解到apply是異步的,不會阻塞咱們的主線程,官方的註釋頁說過android組件的生命週期不會對aplly的異步寫入形成影響,告訴咱們不用擔憂,但它卻會有必定的概率引發anr,好比有一種狀況,當咱們的Activity執行onPause()的時候,也就是ActivityThread類執行handleStopActivity方法是,看看它幹了啥 它會執行 QueuedWork.waitToFinish()方法,而waitToFinish方法中有個while循環,若是咱們還有沒有完成的異步落盤操做時,它會調用到咱們在apply方法中建立的awaitCommit,讓咱們主線程處於等待狀態,直到全部的落盤操做完成,纔會跳出循環,這也就是apply形成anr的元兇。
# ActivityThread.java
@Override
public void handleStopActivity(IBinder token, boolean show, int configChanges,
PendingTransactionActions pendingActions, boolean finalStateRequest, String reason) {
//...省略
// Make sure any pending writes are now committed.
if (!r.isPreHoneycomb()) {
QueuedWork.waitToFinish();
}
//...省略
}
複製代碼
/**
* Trigger queued work to be processed immediately. The queued work is processed on a separate
* thread asynchronous. While doing that run and process all finishers on this thread. The
* finishers can be implemented in a way to check weather the queued work is finished.
*
* Is called from the Activity base class's onPause(), after BroadcastReceiver's onReceive,
* after Service command handling, etc. (so async work is never lost)
*/
public static void waitToFinish() {
...省略
try {
while (true) {
Runnable finisher;
synchronized (sLock) {
finisher = sFinishers.poll();
}
if (finisher == null) {
break;
}
[見4.2.2中的awaitCommit]
finisher.run();
}
} finally {
sCanDelay = true;
}
...省略
}
複製代碼
SharedPreferences是一種輕量級的存儲方式,使用方便,可是也有它適用的場景。要優雅滴使用sp,要注意如下幾點: