【定義】Centrality:圖中每一個節點v的相對重要度c(v),重要度是什麼可根據具體應用定義。算法
【估計方法】閉包
Degree centralityspa
Betweenness centrality路由
Closeness centralityit
Eigenvector centralityast
PageRank及其餘class
一般,Centrality的估計有幾種方法:路由器
1. Degree centrality方法
計算公式:C(v)=degree(v)di
備註:節點v處的邊數直接做爲centrality,若邊是有向的,則能夠有兩個c(v)的定義:入度數和出度數
此定義也可視爲到v距離爲1的全部路徑長度。
2. Betweenness centrality(Freeman Linton, 1977)
計算公式:C(v)=圖中全部除節點v外的節點對之間通過v的最短路徑數/圖中全部除節點v外的節點對之間全部的最短路徑數;
備註:衡量v做爲路由器的功率。
計算複雜度:
1)Floyd-Warshall algorithm(也稱Floyd’s algorithm, Roy-Warshall algorithm, Roy-Floyd algorithm, WFI algorithm,基於動態規劃的計算任意兩點間最短路徑的算法,也可用於計算有向圖的傳遞閉包),平均複雜度爲theta(|V|^3),|V|爲圖中節點總數。
2)Johnson’s algorithm,也是計算最短路徑的算法,在稀疏圖中(有向、有邊權),最壞狀況下,O(|V|^2*Log|V|+|V|*|E|)
3)Brandes' algorithm (a faster algorithm for betweenness centrality, 2001), 在無權重(同權重)的圖上,最壞狀況下O(|V|*|E|)
3. Closeness centrality(Freeman, 1978; Opsahl et al., 2010; Wasserman and Faust, 1994)
計算公式:從v到全部其餘節點的最短距離和的倒數。
備註1:這個centrality只能用於連通圖,非聯通圖上會出現無窮大,而後全部節點的centrality都是0;
備註2:這個centrality可用於衡量一個節點將信息傳播到其餘節點的時間或者花費,能用來尋找圖中的community leader。
修正1:Dangalchev(2006)對上述定義作了修正,將v到其餘節點t的最短距離d(v,t)修正爲2^(-d(v,t)),而後對除v以外的全部節點t的該值求和,做爲centrality,使之可以用到非聯通圖上。
修正2:Opsahl(2010)和Boldi and Vigna(2013)作了另一個修正,使得其能用到非聯通圖上,原來的定義中先對最短距離求和,而後求倒數,該修正中反過來,先對到每一個節點的距離求倒數,在對倒數求和,做爲cnetrality。
4. Eigenvector centrality
5. PageRank及其餘