(說明:本博客中的題目、題目詳細說明及參考代碼均摘自 「何海濤《劍指Offer:名企面試官精講典型編程題》2012年」)html
請實現一個函數,輸入一個整數,輸出該數二進制表示中 1 的個數。例如把 9 表示成二進制是 1001,有 2 位是 1。所以若是輸入 9,該函數輸出是 2。python
計算一個整數的二進制表示中 1 的個數有多種算法。本文主要介紹兩種算法,按位與運算算法和快速算法,更多算法,能夠查看網友 zdd 的博文 「算法-求二進制數中1的個數」。ios
按位與運算算法思想很簡單,即對整數的二進制表示的每一位與 1 求與,所得結果爲非 0 的個數,即爲一個整數二進制表示中 1 的個數,這種算法所需的移位次數至少爲整數的二進制表示中,數字 1 所在的最高位的位次(例如 0b0101,高位和低位所在的位次分別爲 2 和 0),不夠高效;git
快速算法,則不採用移位操做,而是用整數 i 與這個整數減 1 的值 i - 1,按位求與,如此能夠消除,整數的二進制表示中,最低位的 1 。整數的二進制表示有幾個 1,則只需計算幾回。在 C/C++ 實現時,負整數溢出後爲最大整數,但 Python 數值類型(Numeric Type)不會出現溢出的狀況,因此,此時,還須要對邊界值進行限定。面試
注,整數的二進制表示方式和移位操做處理方式:
1)整數的二進制表示方式:在計算機中,整數的二進制表示中,最高位爲符號位。最高位爲 0 時,表示正數; 最高位爲 1 時表示負數。
2)對整數的移位操做:
當整數是負數時,右移時,最低位丟棄,最高位補 1; 左移時,最高位丟棄,最低位補 0。
當整數是正數時,右移時,最低位丟棄,最高位補 0; 左移時,最高位丟棄,最低位補 0 。算法
/* * Author: klchang * Date: 2017.12.16 * Description: Compute the number of 1 in the binary representation of an integer. */ #include <iostream>
#define INT_BITS 32
// Generic method: bitwise and operation with a number that has only one 1 in binary.
int numberOf_1_InBinary_Generic(int i) { int count = 0; int shiftCount = 0; while (i && shiftCount < INT_BITS) { if (i & 1) { ++ count; } i = i >> 1; ++ shiftCount; } return count; } // Fast method: bitwise and operation between integer i and (i-1).
int numberOf_1_InBinary_Fast(int i) { int count = 0; while (i) { std::cout << "iter " << count << ": " << i << std::endl; i = i & (i - 1); count ++; } return count; } void unitest() { int data[] = {-5, 0, 5}; std::cout << "---------------------- Generic Method -----------------------" << std::endl; for (int i = 0; i < 3; ++i) std::cout << "The number of 1 in the binary representation of " << data[i] << " is "
<< numberOf_1_InBinary_Generic(data[i]) << ".\n" << std::endl; std::cout << "----------------------- Fast Method --------------------------" << std::endl; for (int i = 0; i < 3; ++i) std::cout << "The number of 1 in the binary representation of " << data[i] << " is "
<< numberOf_1_InBinary_Fast(data[i]) << ".\n" << std::endl; } int main() { unitest(); return 0; }
爲了更好的理解這個問題在 Python 中的實現,先簡單介紹 Python 數值類型,須要注意 Python 2 和 Python 3 的數值類型是有些區別的。Python 2 的數值類型有 4 種類型,即 int, long, float 和 complex 。而在 Python 3 中,int 和 long 類型已經整合到一塊兒,成爲新的 int 類型,也就是說,Python 3 中,只有 3 種類型,即 int, float 和 complex。 對 bool 類型,在 Python 2 中,其是普通整型 int (at least 32 bits of precision)的子類型;在 Python 3 中,其是 int 類型(unlimited precision)的子類型。編程
Python 2 的數值類型 int 是普通整型,是有範圍的,能夠經過 sys.maxint 獲取其最大值,至少 32 bit。當 Python 2 程序中的整數值超出範圍後,自動轉換爲 long 類型,而 long 類型是沒有範圍限制的,即 unlimited precision。在 Python 3 中,這兩種類型被統一塊兒來,表示爲 int 類型,與 Python 2 的數值類型 long 相同,沒有範圍限定(unlimited precision)。也就是說,在 Python 中,整型數是沒有溢出的(overflow)。在 Python 程序中,當對一個負整數與其減 1 後的值按位求與,若結果爲 0 退出,循環執行此過程。因爲整型數能夠有無限的數值精度,其結果永遠不會是 0,如此編程,在 Python 中,只會形成死循環。而在 C/C++ 中,整數(32 bit)的範圍是 [ - 2147483648, 2147483647 ],與此相對, Python 2 中的 long 類型和 Python 3 中 int 類型,若是不指定整型數的位數,是沒有範圍限制的。app
注:數值精度(numeric precision)是指數值中的數字位數(the number of digits);數值尺度(numeric scale)是指數值中的小數位數(the number of digits after the decimal point)。例如 123.45 可表示爲 decimal(p = 5, s = 2),即 10進制,數值精度爲 5, 數值尺度爲 2。函數
#!/usr/bin/python # -*- coding: utf8 -*-
""" # Author: klchang # Date: 2017.12.16 # Description: Compute the number of 1 in the binary representation of an integer. """ INT_BITS = 32 MAX_INT = (1 << (INT_BITS - 1)) - 1 # Maximum Integer for INT_BITS
# Generic method: bitwise and operation with a number that has only one 1 in binary.
def number_of_1_in_binary_generic(num): count, bit = 0, 1
while num and bit <= MAX_INT + 1: if bit & num: count += 1 num -= bit bit = bit << 1
return count # Fast method: bitwise and operation between integer num and (num-1).
def number_of_1_in_binary_fast(num): count = 0 while num: if num < - MAX_INT - 1 or num > MAX_INT: break
print("iter %d: %d" % (count, num)) count += 1 num = num & (num-1) return count def unitest(): nums = [-5, 0, 5] # Generic Method
print("-" * 30 + " Generic Method " + "-" * 30) for n in nums: print("The number of 1 in the binary representation of %d is %d.\n" % (n, number_of_1_in_binary_generic(n))) # Fast Method
print('\n' + "-" * 30 + " Fast Method " + "-" * 30) for n in nums: print("The number of 1 in the binary representation of %d is %d.\n" % (n, number_of_1_in_binary_fast(n))) if __name__ == '__main__': unitest()
1. targetver.h測試
#pragma once
// The following macros define the minimum required platform. The minimum required platform // is the earliest version of Windows, Internet Explorer etc. that has the necessary features to run // your application. The macros work by enabling all features available on platform versions up to and // including the version specified. // Modify the following defines if you have to target a platform prior to the ones specified below. // Refer to MSDN for the latest info on corresponding values for different platforms.
#ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista.
#define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows.
#endif
2. stdafx.h
// stdafx.h : include file for standard system include files, // or project specific include files that are used frequently, but // are changed infrequently //
#pragma once #include "targetver.h" #include <stdio.h> #include <tchar.h>
// TODO: reference additional headers your program requires here
3. stdafx.cpp
// stdafx.cpp : source file that includes just the standard includes // NumberOf1.pch will be the pre-compiled header // stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
// TODO: reference any additional headers you need in STDAFX.H // and not in this file
4. NumberOf1.cpp
// NumberOf1.cpp : Defines the entry point for the console application. //
// 《劍指Offer——名企面試官精講典型編程題》代碼 // 著做權全部者:何海濤
#include "stdafx.h" #include <string.h> #include <stdlib.h>
// ====================方法一====================
int NumberOf1(unsigned int n); int NumberOf1Between1AndN_Solution1(unsigned int n) { int number = 0; for(unsigned int i = 1; i <= n; ++ i) number += NumberOf1(i); return number; } int NumberOf1(unsigned int n) { int number = 0; while(n) { if(n % 10 == 1) number ++; n = n / 10; } return number; } // ====================方法二====================
int NumberOf1(const char* strN); int PowerBase10(unsigned int n); int NumberOf1Between1AndN_Solution2(int n) { if(n <= 0) return 0; char strN[50]; sprintf(strN, "%d", n); return NumberOf1(strN); } int NumberOf1(const char* strN) { if(!strN || *strN < '0' || *strN > '9' || *strN == '\0') return 0; int first = *strN - '0'; unsigned int length = static_cast<unsigned int>(strlen(strN)); if(length == 1 && first == 0) return 0; if(length == 1 && first > 0) return 1; // 假設strN是"21345" // numFirstDigit是數字10000-19999的第一個位中1的數目
int numFirstDigit = 0; if(first > 1) numFirstDigit = PowerBase10(length - 1); else if(first == 1) numFirstDigit = atoi(strN + 1) + 1; // numOtherDigits是01346-21345除了第一位以外的數位中1的數目
int numOtherDigits = first * (length - 1) * PowerBase10(length - 2); // numRecursive是1-1345中1的數目
int numRecursive = NumberOf1(strN + 1); return numFirstDigit + numOtherDigits + numRecursive; } int PowerBase10(unsigned int n) { int result = 1; for(unsigned int i = 0; i < n; ++ i) result *= 10; return result; } // ====================測試代碼====================
void Test(char* testName, int n, int expected) { if(testName != NULL) printf("%s begins: \n", testName); if(NumberOf1Between1AndN_Solution1(n) == expected) printf("Solution1 passed.\n"); else printf("Solution1 failed.\n"); if(NumberOf1Between1AndN_Solution2(n) == expected) printf("Solution2 passed.\n"); else printf("Solution2 failed.\n"); printf("\n"); } void Test() { Test("Test1", 1, 1); Test("Test2", 5, 1); Test("Test3", 10, 2); Test("Test4", 55, 16); Test("Test5", 99, 20); Test("Test6", 10000, 4001); Test("Test7", 21345, 18821); Test("Test8", 0, 0); } int _tmain(int argc, _TCHAR* argv[]) { Test(); return 0; }
5. 參考代碼下載
項目 10_NumberOf1 下載: 百度網盤
何海濤《劍指Offer:名企面試官精講典型編程題》 全部參考代碼下載:百度網盤
[1] 何海濤. 劍指 Offer:名企面試官精講典型編程題 [M]. 北京:電子工業出版社,2012. 77-82.
[2] Python Software Foundation. Python 2.7.14 Documentation, The Python Standard Library, 5.4. Numeric Types — int, float, long, complex [OL]. https://docs.python.org/2/library/stdtypes.html#numeric-types-int-float-long-complex. 2017.
[3] Python Software Foundation. Python 3.6.4rc1 Documentation, The Python Standard Library, 4.4. Numeric Types — int, float, complex [OL]. https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex. 2017.
[4] Stack Overflow Users. How do I interpret precision and scale of a number in a database [OL]. https://stackoverflow.com/questions/2377174/how-do-i-interpret-precision-and-scale-of-a-number-in-a-database.