題目以下:spa
Given two integer arrays
arr1
andarr2
, return the minimum number of operations (possibly zero) needed to makearr1
strictly increasing.codeIn one operation, you can choose two indices
0 <= i < arr1.length
and0 <= j < arr2.length
and do the assignmentarr1[i] = arr2[j]
.blogIf there is no way to make
arr1
strictly increasing, return-1
.排序Example 1:it
Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4] Output: 1 Explanation: Replace with , then . 52arr1 = [1, 2, 3, 6, 7]Example 2:io
Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1] Output: 2 Explanation: Replace with and then replace with . . 5334arr1 = [1, 3, 4, 6, 7]Example 3:class
Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3] Output: -1 Explanation: You can't make strictly increasing.arr1Constraints:im
1 <= arr1.length, arr2.length <= 2000
0 <= arr1[i], arr2[i] <= 10^9
解題思路:若是arr1[i]個元素須要交換的話,那麼必定是和arr2中大於arr1[i-1]的全部值中最小的那個交換。在這個前提下,能夠利用動態規劃的思想來解決這個問題。首先對arr2去重排序,記dp[i][j] = v 表示使得arr1在0~i區間遞增須要的最小交換次數爲v,而且最後一個交換的操做是 arr1[i] 與 arr2[j]交換,因爲存在不須要交換的狀況,因此令 dp[i][len(arr2)]爲arr1[i]爲不須要交換。由於題目要保證遞增,因此只須要關注arr1[i-1]與arr[i]的值便可,而二者之間只有如下四種狀況:sort
1. arr1[i] 與 arr1[i-1]都不交換,這個的前提是 arr1[i] > arr1[i-1],有 dp[i][len(arr2)] = dp[i-1][len(arr2)] ;di
2. 只有arr1[i] 須要交換,對於任意的arr2[j] > arr1[i-1],都有 dp[i][j] = dp[i-1][len(arr2)] + 1;
3. 只有arr1[i-1] 須要交換,對於任意的 arr2[j] < arr1[i],都有 dp[i][len(arr2)] = dp[i-1][j] + 1;
4.二者都要交換,若是i-1與j-1交換,那麼i就和j交換,有dp[i][j] = dp[i-1][j-1] + 1
最後的結果只須要求出四種狀況的最小值便可。
代碼以下:
class Solution { public: int makeArrayIncreasing(vector<int>& arr1, vector<int>& arr2) { set<int> st(arr2.begin(), arr2.end()); //arr2.clear(); arr2.assign(st.begin(), st.end()); //arr2.sort(); sort(arr2.begin(), arr2.end()); vector <vector<int>> dp ;for (int i =0;i< arr1.size();i++){ vector<int> v2 (arr2.size()+1,2001); dp.push_back(v2); } for (int i = 0 ;i < arr2.size();i++){ dp[0][i] = 1; } int res = 2001; int LAST_INDEX = arr2.size(); dp[0][arr2.size()] = 0; //int ] = 0; for (int i =1 ;i < arr1.size();i++){ for (int j = 0;j < arr2.size();j++){ //only [i] exchange if (arr2[j] > arr1[i-1]){ dp[i][j] = min(dp[i][j],dp[i-1][LAST_INDEX] + 1); } //both [i] and [i-1] exchange if(j > 0){ dp[i][j] = min(dp[i][j],dp[i-1][j-1] + 1); } //only [i-1] change if (arr1[i] > arr2[j]){ dp[i][LAST_INDEX] = min(dp[i][LAST_INDEX],dp[i-1][j]); } } // no exchange if (arr1[i] > arr1[i-1]){ dp[i][LAST_INDEX] = min(dp[i][LAST_INDEX],dp[i-1][LAST_INDEX]); } } for (int i = 0; i <= arr2.size();i++){ res = min(res,dp[arr1.size()-1][i]); } return res == 2001 ? -1 : res; } };